NASM — The Netwide Assembler

version 2.11.02

© 1996-2012 The NASM Development Team — All Rights Reserved

This document is redistributable under the license given in the file "LICENSE" distributed in the NASM
archive.

Contents

Chapter 1: Introduction. e e e e e 16
LAIWhatIs NASM?. e 16
1.1.1 Why Yet Another Assembler?. e 16
1.1.2 License ConditionS e e e 16
1.2 Contact Information L 17
L3 Installation. e 17
1.3.1 Installing NASM under MS-DOS orWindows, 17
1.3.2 Installing NASM under Unix e e e e 18
Chapter 2: Running NASM. e 19
2.1 NASM Command-Line Syntax e e 19
2.1.1 The-o Option: Specifying the OutputFileName 19
2.1.2 The-f Option: Specifying the Output File Format 20
2.1.3 The-1 Option: Generatinga ListingFile 20
2.1.4 The-M Option: Generate Makefile Dependencies. 20
2.1.5 The-MG Option: Generate Makefile Dependencies 20
2.1.6 The-MF Option: Set Makefile Dependency File 20
2.1.7 The-MD Option: Assemble and Generate Dependencies.
2.1.8 The-MT Option: Dependency Target Name. 21
2.1.9 The-MQ Option: Dependency Target Name (Quoted) 21
2.1.10 The-MP Option: Emit phony targets., 21
2.1.11 The-F Option: Selecting a Debug Information Format 21
2.1.12 The-g Option: Enabling Debug Information. 21
2.1.13 The-x Option: Selecting an Error Reporting Format. 21
2.1.14 The-Z Option: Send ErrorstoaFile. 22
2.1.15 The-s Option: Send Errorstotdout v v v v v it e e e e e e 22
2.1.16 The-i Option: Include File Search Directories 22
2.1.17 The-p Option: Pre=Include aFile. ... 23
2.1.18 The-d Option: Pre-DefineaMacro. i i i it 23
2.1.19 The-u Option: UndefineaMacro. vttt 23

2.1.20 The-E Option: Preprocess Only. i e e i e e e e e 23

2.1.21 The-a Option: Don’t Preprocess AtAll. 24
2.1.22 The-0 Option: Specifying Multipass Optimization 24
2.1.23 The-t Option: Enable TASM Compatibility Mode 24
2.1.24 The-w and-w Options: Enable or Disable Assembly Warnings 24
2.1.25 The-v Option: Display VersionInfo 25
2.1.26 The-y Option: Display Available Debug Info Formats 26
2.1.27 The--prefix and—-postfix Options. 26
2.1.28 ThelASMENV Environment Variable 26
2.2 Quick Start for MASM USEIS e e e e e e 26
221 NASMIs Case—Sensitive e 26
2.2.2 NASM Requires Square Brackets For Memory References 26
2.2.3 NASM Doesn'’t Store Variable Types e 27
224 NASMDOESNBSSUME . . .+ v v v v e e e e e e e e 27
2.2.5 NASM Doesn’'t Support Memory Models 27
2.2.6 Floating—Point Differences e 28
2.2.7 Other Differences. e 28
Chapter 3: The NASM Language 0 i i e e e e e e e e e e e e e e e 29
3.1 LayoutofaNASM Source Line e e 29
3.2 Pseudo-Instructions L e 30
3.2.1DB and Friends: Declaring Initialized Data 30
3.2.2RESB and Friends: Declaring Uninitialized Data 30
3.2.3INCBIN: Including External Binary Files. 31
3.24EQU: Defining Constants e e 31
3.2.5TIMES: Repeating InstructionsorData 31
3.3 Effective Addresses 32
3.4CoNnstants L e e 33
34 1NumericConstants e 33
3.4.2Character Strings e e e e e e 34
343 Character Constants. e 35
3.44String Constants L L e e e e 35
3.4.5Unicode Strings. L e e e e 35

3.4.6 Floating—PointConstants e e e 35

347 Packed BCD Constants e e e e e 37

BE5EXPrESSIONS i e e e e 37
3.5.1|:Bitwise OROPErator. v v vt o e e e e 37
3.5.27: Bitwise XOR Operator. o e e e e e 37
3.5.36: Bitwise AND Operator. e e e 37
3.5.4<<and>>: BitShiftOperators e 37
3.5.5+ and-: Addition and Subtraction Operators 37
3.5.6%, /, //,% and%%: Multiplication and Division. 38
35.7Unary Operators e e e e e e e e e e 38

3BSEGANAWRT v v o v e e 38

3.7STRICT: Inhibiting Optimization e 39

3.8 Critical EXPressions e e e e 39

3.9 Local Labels. 39

Chapter 4: The NASM PreproCessor o v v i i i e e e e e e e e e e e e e e e 41

4.1 Single-Line MacCros e e e 41
4.1.1 The NormalWaygdefine i i i i e i e e e s e e e e 41
4.1.2 Resolvinggdefine: $xdefine i e e 42
413 MacroIndirections [...1 e e 43
4.1.4 Concatenating Single Line Macro Tokexs: 43
4.1.5 The Macro Name Itsef? and%22 44
4.1.6 Undefining Single—Line Macrosundef v it e e 44
4.1.7 Preprocessor Variablésissign 44
4.1.8 Defining Stringssdefstr v o v e e e e e e e e e 45
4.1.9 Defining TOKENSYdeftok v v v v vt e e e e e e e e e e 45

4.2 String Manipulation in Macros. e e e e 45
4.2.1 Concatenating StringBstrcat. . . v v v v v v e e e e e e e e e 45
4.2.2String Lengthsstrlen. e e e e e e 46
4.2.3 Extracting Substringgsubstr e e e e 46

4.3 Multi—Line MacroS3smacro v v v i e e e e 46
4.3.1 Overloading Multi-Line Macros i e e e 47
4.3.2 Macro-Local Labels 48
4.3.3 Greedy Macro Parameters. e e e e e e e 48
4.3.4 Macro Parameters Range e e e 49

4.3.5 Default Macro Parameters e e e e e e 50

4.3.6%0: Macro Parameter Counter. 51
4.3.7%00: Label PreceedingMacro e 51
4.3.8%5rotate: Rotating Macro Parameters e 51
4.3.9 Concatenating Macro Parameters e e e 52
4.3.10 Condition Codes as Macro Parameters. v v i 53
4.3.11 Disabling Listing EXpansion. e e e e e 53
4.3.12 Undefining Multi—Line MacroSunmacro. v v v v v v v v v e e e e e e 53
4.4 Conditional Assembly L e 54
4.4.1%ifdef: Testing Single-Line Macro Existence. 54
4.4.2%ifmacro: Testing Multi-Line Macro Existence 55
4.4.3%ifctx: Testingthe ContextStack. 55
4.4.4%1if: Testing Arbitrary Numeric Expressions o0 55
4.45%ifidn and%ifidni: Testing Exact TextlIdentity 56
4.46%ifid, $ifnum, $ifstr: TestingTokenTypes 56
4.4 7%iftoken: TestforaSingle Token, 57
4.48%ifempty: Testfor Empty Expansion. e 57
4.49%1ifenv: Test If Environment Variable Exists 57
4.5 PreproCessor LOOPBLED. « v v v v v v v e e e e e e e e e e e e e e e e 58
4.6 Source Files and Dependencies e 58
4.6.1%3include: Including Other Files 59
4.6.2%pathsearch: SearchtheIncludePath 59
4.6.3%3depend: Add DependentFiles 59
4.6.4%use: Include Standard Macro Package 60
47 TheContext Stack 60
4.7.1%push and%pop: Creating and Removing Contexts 60
4.7.2 Context-Local Labels. 60
4.7.3 Context-Local Single—-Line Macros. e e 61
4.7.4 Context Fall-Through Lookup e 61
4.75%repl: RenamingaContext e e 62
4.7.6 Example Use of the Context Stack: Block IFs 62
4.8 Stack Relative Preprocessor Directives. e e e 64

4.8.1%argDirective. L 64

4.8.2%5stacksize Directive e 64

4.83%1localDirective 65
4.9 Reporting User-Defined Errosserror, $warning, $fatal 65
4.10 Other Preprocessor Directives e 66

4.10.1%1ine Directive 66

4.10.2% ! <env>: Read an environmentvariable.. o oL 67
4.11 Comment Blockcomment L 67
412 Standard MacCros e 67

4.12.1 NASM Version Macros o o v v i e e e e e 67

4.12.2__NASM_VERSION_ID_ :NASMVersionID. 68

4.12.3__NASM_VER__:NASM Versionstring 68

4124 FILE__and__LINE_ :File Name and Line Number. 68

4125 BITS_ :CurrentBITSMode 68

4.12.6__OUTPUT_FORMAT__: CurrentOQutput Format 69

4.12.7 Assembly Date and Time Macros 0 i i i i e e 69

4.12.8__USE_package :Packagelnclude Test., 69

4.12.9__pPASS__:AssemblyPass. 70

4.12.10sTRUC andeENDSTRUC: Declaring Structure Data Types. 70

4.12.111STRUC, AT andIEND: Declaring Instances of Structures 71

4.12.12ALIGN andALIGNB: Data Alignmento 72

4.12.13sECTALIGN: Section Alignment. 73

Chapter 5: Standard Macro Packages i e e e 74
5.laltreq: Alternate Register Names 74
52smartalign: SmartALIGN Macro e e e e e e 74
5.3fp: Floating—point macros. e e 75
5.4ifunc:Integerfunctions e 75

5.4.1 Integer logarithms e e 75

Chapter 6: Assembler Directives e e e e 76
6.1BITS: Specifying Target ProcessorMode e 76

6.1.1USE16 & USE32: Aliases forBITS 77
6.2DEFAULT: Change the assemblerdefaults 77

6.2.1REL & ABS: RIP-relative addressing e 77

6.2.2BND & NOBND: BND prefix e e 77

6.3SECTION or SEGMENT: Changing and Defining Sections 77

6.3.1 The _SECT__MaCrO. o it e e e e e 78
6.4ABSOLUTE: Defining Absolute Labels. 78
6.5EXTERN: Importing Symbols from Other Modules. 79
6.6 GLOBAL: Exporting Symbols to Other Modules 80
6.7COMMON: Defining Common Data Areas. v i i i i e e e 80
6.8CcpU: Defining CPU Dependencies. i i e e e e e 80
6.9FLOAT: Handling of floating—pointconstants 81

Chapter 7: Output Formats e e e 82
7.1bin: Flat—-Form Binary Output e e 82

7.1.10RG: Binary File Program Origin e e 82

7.1.2bin Extensions to theECTION Directive v 83

7.1.3 Multisection Support forthein Format 83

7.1A4MapFiles. e e 83
7.2ith:Intel Hex Output. e e 84
7.3srec: Motorola S—Records Qutput e e 84
7.40b5: Microsoft OMF ObjectFiles e 84

7.4.10b7j Extensions to theEGMENT Directive v o v i e e e e e 85

7.4.2GROUP: Defining Groups of Segments e 86

7.4.3UPPERCASE: Disabling Case SensitivityinOQutput 86

7.4.4IMPORT: Importing DLL Symbols e 86

7.4.5EXPORT: Exporting DLL Symbols 87

7.4.6..start: Defining the Program Entry Point. 87

7.4.70b7j Extensions to theXTERN Directive. e 87

7.4.80b7j Extensions to theOMMON Directive. e 88
7.5win32: Microsoft Win32 ObjectFiles. o 88

7.5.1win32 Extensions to theECTION Directive 89

7.5.2win32: Safe Structured ExceptionHandling, 89
7.6win64: Microsoft Win64 ObjectFiles. o 91

7.6.1win64: Writing Position—-IndependentCode 91

7.6.2win64: Structured Exception Handling. oL 92
7.7coff: Common ObjectFile Format 95

7.8macho32 andmacho64: Mach ObjectFile Format. 95

7.9elf32,elf64,elfx32: Executable and Linkable Format ObjectFiles 95

7.9.1 ELF specific directivesabi. e e e 95
7.9.2e1f Extensions to theECTION Directive o v 95
7.9.3 Position-Independent Codg: £ Special SymbolsargRrT 96
7.9.4 Thread Local Storagel £ Special SymbolsardrT. 97
7.9.5e1f Extensions to theLOBAL Directive. 97
7.9.6e1f Extensions to theOMMON Directive 98
7.9.716-bitcodeand ELF 98
7.9.8Debug formatsand ELF 98
7.10aout: Linuxa.out ObjectFiles e 98
7.11aoutb: NetBSD/FreeBSD/OpenBSB. out ObjectFiles 98
7.12as86: Minix/Linux as86 ObjectFiles. 99
7.13rdf: Relocatable Dynamic Object File Format 99
7.13.1 Requiring a Library: THRIBRARY Directive 99
7.13.2 Specifying a Module Name: TMeDULE Directive 99
7.13.3rdf Extensions to theLOBAL Directive 100
7.13.4rdf Extensions to thEXTERN Directive 100
7.14dbg: Debugging Format e 100
Chapter 8: Writing 16—bit Code (DOS, Windows 3/3.1). i i i i .. 102
8.1 ProducingEXE Files e e 102
8.1.1 Using thebj Format To GenerateEXE Files. 102
8.1.2 Using théin Format To GenerateEXE Files. 103
8.2 Producing. COMFiles e e 104
8.2.1 Using théin Format To GenerateCOM Files. 104
8.2.2 Using thebj Format To GenerateCoOM Files. 105
8.3 Producing. sSYS Files e e 105
8.4 Interfacing to 16-bit C Programs. e e e e 105
8.4.1 External Symbol Names e 105
8.4.2Memory Models e 106
8.4.3 Function Definitions and Function Calls., 107
8.4.4 Accessing Dataltems. e 109
8.4.5c16.mac: Helper Macros for the 16-bitCInterface 110
8.5 Interfacing to Borland Pascal Programs e 111

10

8.5.1 The Pascal Calling Convention it 111

8.5.2 Borland Pascal Segment Name Restrictions 113
8.5.3 Usingc16.mac With Pascal Programs. 113
Chapter 9: Writing 32-bit Code (Unix, Win32, DJGPP). i 114
9.1 Interfacing to 32-bit C Programs. e e e e 114
9.1.1 External Symbol Names 114
9.1.2 Function Definitions and FunctionCalls. 114
9.1.3Accessing Dataltems. e e 116
9.1.4c32.mac: Helper Macros for the 32-bitCiInterface 117
9.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries. 117
9.2.1 Obtaining the Address of the GOT 118
9.2.2 Finding Your Local Dataltems e 119
9.2.3 Finding External and Common Dataltems 119
9.2.4 Exporting Symbols to the Library User 119
9.2.5 Calling Procedures Outside the Library 120
9.2.6 Generating the Library File e 120
Chapter 10: Mixing 16 and 32 BitCode. e e 122
10.1 MiXxed=Size JUMPS o i e e e e 122
10.2 Addressing Between Different-Size Segments00 122
10.3 Other Mixed-Size Instructions e 123
Chapter 11: Writing 64-bit Code (Unix, Win64) i i i i 125
11.1 Register Names in 64-bitMode 125
11.2 Immediates and Displacements in 64-bitMode, 125
11.3 Interfacing to 64-bit C Programs (Unix) e 126
11.4 Interfacing to 64-bit C Programs (Win64) e 127
Chapter 12: Troubleshooting e 128
12.1 Common Problems e e 128
12.1.1 NASM Generates InefficientCode. 128
12.1.2 My JumpsareQutof Range e 128
12.1.30RG Doesn't Work e 128
12.14TIMES Doesn't Work o e 129
12.2BUGS . . . o o e 129
Appendix A: Ndisasm e e e 131

Al Introduction. L e e e e 131

A.2 Getting Started: Installation e 131
A3 Running NDISASM. e e 131
A.3.1 COM Files: Specifyingan Origin. i 131
A.3.2 Code Following Data: Synchronisation. 132
A.3.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation 132
A.3.40therOptions e e e e 133
A.4Bugs and Improvements. e e e e e e e 133
Appendix B: Instruction List L e e e 134
B.lIntroduction. e e 134
B.1.1 Special INStructions.... e e e 134
B.1.2 Conventional instructions. e e 134
B.1.3 Katmai Streaming SIMD instructions (SSE — a.k.a. KNI, XMM, MMX2) 163
B.1.4 Introduced in Deschutes but necessary for SSEsupport 165
B.1.5 XSAVE group (AVX and extended state). 165
B.1.6 Generic memory operations. i e e e e e e e e 165
B.1.7 New MMX instructions introduced in Katmai. 165
B.1.8 AMD Enhanced 3DNow! (Athlon) instructions 166
B.1.9 Willamette SSE2 Cacheability Instructions 166
B.1.10 Willamette MMX instructions (SSE2 SIMD Integer Instructions) 166
B.1.11 Willamette Streaming SIMD instructions (SSE2) 168
B.1.12 Prescott New Instructions (SSE3) e 170
B.1.13VMX/SVM INStructions. e 170
B.1.14 Extended Page Tables VMX instructions 171
B.1.15 Tejas New Instructions (SSSE3). o i i i i e 171
B.1.16 AMD SSE4A e 171
B.1.17 New instructions in Barcelona. 172
B.1.18 Penryn New Instructions (SSE4.1). e 172
B.1.19 Nehalem New Instructions (SSE4.2). i i it 173
B.1.20 Intel SMX. e 173
B.1.21 Geode (Cyrix) 3DNow! additions o 173
B.1.22 Intel new instructions in 22?2, 174
B.1.23 Intel AES instructions. e 174

11

B.1.24 Intel AVX AES inStructions. e e e e e 174

12

B.1.25 Intel AVXinstructions e 174
B.1.26 Intel Carry—Less Multiplication instructions (CLMUL) 188
B.1.27 Intel AVX Carry-Less Multiplication instructions (CLMUL) 188
B.1.28 Intel Fused Multiply—Add instructions (FMA). 188
B.1.29 Intel post—32 nm processor instructions e e 192
B.1.30 VIA (Centaur) security instructions e 193
B.1.31 AMD Lightweight Profiling (LWP) instructions 193
B.1.32 AMD XOP and FMA4 instructions (SSE5) o 193
B.1.33 Intel AVX2 inStructions 196
B.1.34 Transactional Synchronization Extensions (TSX) 200
B.1.35 Intel BMI1 and BMI2 instructions, AMD TBM instructions 200
B.1.36 Intel AVX-512 instructions. 201
B.1.37 Systematic names for the hinting nop instructions 215
Appendix C: NASM Version History e e 220
C.ANASM2SENES . . . o v o o e e e e e e e e 220
C.1.1Version 2.11.02 e 220
C.1.2Version 2.11.01 e e 220
C.1.3Version 2.11 L e 220
C.1.4Version 2.10.09 e e 221
C.1.5Version 2.10.08 e e 221
C.1.6 Version 2.10.07 o e e 221
C.1.7Version 2.10.06 e e 221
C.1.8Version 2.10.05 e 222
C.1.9Version 2.10.04 e 222
C.1.10 Version 2.10.03 e e 222
C.1.11Version 2.10.02. L e e 222
C.1.12 Version 2.10.01 L e e 222
C.L.A3Version 2.10 o e e e 222
C.1.14Version 2.09.10 e e 223
C.1.15Version 2.09.09 e 223
C.1.16 Version 2.09.08 e e 223
C.1.17 Version 2.09.07 e e 223

C.1.18 Version 2.09.06 223

C.1.19Version 2.09.05. e 223
C.1.20 Version 2.09.04 e e 223
C.1.21Version 2.09.03 e 223
C.1.22Version 2.09.02 e 224
C.1.23Version 2.09.01 e e 224
C.1.24Version 2.09 e 224
C.1.25Version 2.08.02 e e 225
C.1.26 Version 2.08.01 e e 225
C.1.27 Version 2.08 e 225
C.1.28 Version 2.07 e e 226
C.1.29Version 2.06 e e 226
C.1.30 Version 2.05.01 e e 227
C.1.31Version 2.05 e e 227
C.1.32Version 2.04 e 227
C.1.33Version 2.03.01 e e 228
C.1.34 Version 2.03 L e 228
C.1.35Version 2.02 e e 229
C.1.36 Version 2.01 e e 229
C.1.37Version 2.00 e 230
C.2NASMO0.98 Series o o e e 230
C.2.1Version 0.98.39 231
C.2.2Version 0.98.38 231
C.2.3Version 0.98.37 231
C.24Version 0.98.36 231
C.25Version 0.98.35 L 232
C.2.6Version 0.98.34 232
C.2.7Version 0.98.33 L 232
C.2.8Version 0.98.32 233
C.29Version 0.98.31 233
C.2.10Version 0.98.30 e e 233
C.2.11Version 0.98.28 e 233
C.2.12Version 0.98.26 e e 234

13

14

C.2.13Version 0.98.25alt. e 234

C.2.14 Version 0.98.25 L e e 234
C.2.15Version 0.98.24pL. e e 234
C.2.16 Version 0.98.24 e e e 234
C.2.17Version 0.98.23 e 234
C.2.18Version 0.98.22 e e 234
C.2.19Version 0.98.21 e e 234
C.2.20 Version 0.98.20 e 234
C.2.21Version 0.98.19. e 234
C.2.22Version 0.98.18 e 234
C.2.23Version 0.98.17 e 234
C.2.24Version 0.98.16 e 234
C.2.25Version 0.98.15. L e e 235
C.2.26 Version 0.98.14 L e e 235
C.2.27Version 0.98.13 e 235
C.2.28Version 0.98.12 e 235
C.2.29Version 0.98.11 e e 235
C.2.30Version 0.98.10. e 235
C.2.31Version 0.98.09. e 235
C.2.32Version 0.98.08 e e 235
C.2.33 Version 0.98.09b with John Coffman patches released 28-Oct-2001 236
C.2.34 Version 0.98.07 released 01/28/01. i i 236
C.2.35 Version 0.98.06f released 01/18/01 236
C.2.36 Version 0.98.06e released 01/09/01 236
C.2.37Version 0.98pl e 237
C.2.38 Version 0.98bf (bug—fixed) 237
C.2.39 Version 0.98.03 with John Coffman’s changes released 27-Jul-2000 237
C.240Version 0.98.03 L e 237
C.241Version 0.98 e 241
C.2.42Version 0.98p9 e e 241
C.2.43Version 0.98p8 e e 241
C.2.44Version 0.98p7 e e 241
C.2.45Version 0.98p6 e 242

C.2.46 Version 0.98P3.7 e 242

C.2.47Version 0.98p3.6 e e e 242
C.2.48Version 0.98p3.5 e 242
C.2.49Version 0.98p3.4 e e 243
C.2.50Version 0.98p3.3 e e 243
C.2.501Version 0.98P3.2 e e 243
C.2.52Version 0.98p3-hpa. e 243
C.2.53 Version 0.98 pre-release 3 e 244
C.2.54 Version 0.98 pre-release 2 e e 244
C.255Version 0.98 pre-release 1 e e 244
C.3NASMO.9SEMES o o e e e e e e 245
C.3.1 Version 0.97 released December 1997 245
C.3.2 Version 0.96 released November 1997 o 246
C.3.3Version 0.95released July 1997 248
C.3.4 Version 0.94 released April 1997 e 249
C.3.5Version 0.93 released January 1997. e 250
C.3.6 Version 0.92 released January 1997. e e e 250
C.3.7 Version 0.91 released November 1996 o 251
C.3.8 Version 0.90 released October 1996 251

15

Chapter 1: Introduction

1.1 What Is NASM?

The Netwide Assembler, NASM, is an 80x86 and x86-64 assembler designed for portability and modularity.
It supports a range of object file formats, including Linux ar®kD a.out, ELF, COFF, Mach-0,
Microsoft 16—-bitoBJ, Win32 andwiné4. It will also output plain binary files. Its syntax is designed to be
simple and easy to understand, similar to Intel's but less complex. It supports all currently known x86
architectural extensions, and has strong support for macros.

1.1.1 Why Yet Another Assembler?

The Netwide Assembler grew out of an ideacaimp . lang.asm.x86 (or possiblyalt.lang.asm — |
forget which), which was essentially that there didn’t seem to be afge®#86—series assembler around,
and that maybe someone ought to write one.

e a86 is good, but not free, and in particular you don’t get any 32-bit capability until you pay. It's DOS
only, too.

e gas is free, and ports over to DOS and Unix, but it's not very good, since it's designed to be a back end to
gcc, which always feeds it correct code. So its error checking is minimal. Also, its syntax is horrible, from
the point of view of anyone trying to actuallyrite anything in it. Plus you can’t write 16-bit code in it
(properly.)

* as86 is specific to Minix and Linux, and (my version at least) doesn't seem to have much (or any)
documentation.

e MASM isn't very good, and it's (was) expensive, and it runs only under DOS.

e TASM is better, but still strives for MASM compatibility, which means millions of directives and tons of
red tape. And its syntax is essentially MASM’s, with the contradictions and quirks that entails (although it
sorts out some of those by means of Ideal mode.) It's expensive too. And it's DOS-only.

So here, for your coding pleasure, is NASM. At present it’s still in prototype stage — we don’t promise that it
can outperform any of these assemblers. But plgdsasesend us bug reports, fixes, helpful information,

and anything else you can get your hands on (and thanks to the many people who've done this already! You
all know who you are), and we’ll improve it out of all recognition. Again.

1.1.2 License Conditions

Please see the filBICENSE, supplied as part of any NASM distribution archive, for the license conditions
under which you may use NASM. NASM is now under the so—called 2-clause BSD license, also known as
the simplified BSD license.

Copyright 1996-2011 the NASM Authors — All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

« Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

« Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1.2 Contact Information

The current version of NASM (since about 0.98.08) is maintained by a team of developers, accessible through
the nasm—devel mailing list (see below for the link). If you want to report a bug, please read section 12.2
first.

NASM has a website a&tttp://www.nasm.us/. If it's not there, google for us!

New releases, release candidates, and daily development snapshots of NASM are available from the official
web site.

Announcements are posted to comp.lang.asm.x86, and to the web site
http://www.freshmeat .net/.

If you want information about the current development status, please subscribentosthedevel email
list; see link from the website.

1.3 Installation
1.3.1 Installing NASM under MS-DOS or Windows

Once you've obtained the appropriate archive for NASMasm-XXX-dos.zip oOf
nasm-XXX-win32.zip (where XxxX denotes the version number of NASM contained in the archive),
unpack it into its own directory (for exampte \nasm).

The archive will contain a set of executable files: the NASM executablediten. exe, the NDISASM
executable filemdisasm.exe, and possibly additional utilities to handle the RDOFF file format.

The only file NASM needs to run is its own executable, so eapym. exe to a directory on your PATH, or
alternatively ediautoexec.bat to add thenasm directory to yourPATH (to do that under Windows XP,

go to Start > Control Panel > System > Advanced > Environment Variables; these instructions may work
under other versions of Windows as well.)

That's it — NASM is installed. You don't need the nasm directory to be present to run NASM (unless you've
added it to youPATH), so you can delete it if you need to save space; however, you may want to keep the
documentation or test programs.

If you've downloaded the DOS source archivi@,sm—-XxX.zip, thenasm directory will also contain the
full NASM source code, and a selection of Makefiles you can (hopefully) use to rebuild your copy of NASM
from scratch. See the filENSTALL in the source archive.

17

http://www.nasm.us/
news:comp.lang.asm.x86
http://www.freshmeat.net/

18

Note that a number of files are generated from other files by Perl scripts. Although the NASM source

distribution includes these generated files, you will need to rebuild them (and hence, will need a Perl
interpreter) if you change insns.dat, standard.mac or the documentation. It is possible future source
distributions may not include these files at all. Ports of Perl for a variety of platforms, including DOS and

Windows, are available from www.cpan.org.

1.3.2 Installing NASM under Unix

Once you've obtained the Unix source archive for NASMsm-XXX.tar.gz (wherexxx denotes the
version number of NASM contained in the archive), unpack it into a directory sythsas 1ocal/src.
The archive, when unpacked, will create its own subdireetagmn—XxX.

NASM is an auto—configuring package: once you've unpackegtito the directory it's been unpacked into
and type. /configure. This shell script will find the best C compiler to use for building NASM and set up
Makefiles accordingly.

Once NASM has auto-configured, you can tygke to build thenasm andndisasm binaries, and then
make install to install them in/usr/local/bin and install the man pagesasm.1 and
ndisasm.1 in /usr/local/man/manl. Alternatively, you can give options such-asprefix to the
configure script (see the fileNSTALL for more details), or install the programs yourself.

NASM also comes with a set of utilities for handling HmOFF custom object—file format, which are in the
rdoff subdirectory of the NASM archive. You can build these wittke rdf and install them with
make rdf_install, if you want them.

http://www.cpan.org/ports/

Chapter 2: Running NASM

2.1 NASM Command-Line Syntax
To assemble a file, you issue a command of the form
nasm —-f <format> <filename> [-o0 <output>]
For example,
nasm —-f elf myfile.asm
will assemblenyfile.asm into anELF object filemyfile.o. And
nasm —-f bin myfile.asm -o myfile.com
will assemblenyfile.asm into a raw binary filenyfile.com.

To produce a listing file, with the hex codes output from NASM displayed on the left of the original sources,
use the-1 option to give a listing file name, for example:

nasm —-f coff myfile.asm -1 myfile.lst

To get further usage instructions from NASM, try typing

nasm -h

As —hf, this will also list the available output file formats, and what they are.

If you use Linux but aren’t sure whether your system.isut or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like
nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1

then your system isLF, and you should use the optietf elf when you want NASM to produce Linux
object files. If it says

nasm: Linux/i1386 demand-paged executable (QMAGIC)

or something similar, your systemads out, and you should usef aout instead (Linuxa.out systems
have long been obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won’t see any output at all,
unless it gives error messages.

2.1.1 The-o Option: Specifying the Output File Name

NASM will normally choose the name of your output file for you; precisely how it does this is dependent on
the object file format. For Microsoft object file formatso(, win32 andwiné64), it will remove the.asm
extension (or whatever extension you like to use — NASM doesn't care) from your source file hame and
substitute . obj. For Unix object file formatsafout, as86, coff, el£32, elf64, elfx32, ieee,
macho32 andmacho64) it will substitute . o. For dbg, rdf, ith andsrec, it will use .dbg, .rdf,

19

.ith and .srec, respectively, and for thein format it will simply remove the extension, so that
myfile.asm produces the output fileyfile.

If the output file already exists, NASM will overwrite it, unless it has the same name as the input file, in
which case it will give a warning and usesm. out as the output file name instead.

For situations in which this behaviour is unacceptable, NASM providesdtmmand-line option, which
allows you to specify your desired output file name. You inve&edy following it with the name you wish
for the output file, either with or without an intervening space. For example:

nasm —-f bin program.asm -o program.com
nasm —-f bin driver.asm -odriver.sys

Note that this is a small o, and is different from a capital O , which is used to specify the number of
optimisation passes required. See section 2.1.22.

2.1.2 The-£ Option: Specifying the Output File Format

If you do not supply the-f option to NASM, it will choose an output file format for you itself. In the
distribution versions of NASM, the default is alwaysn; if you've compiled your own copy of NASM, you
can redefineF_DEFAULT at compile time and choose what you want the default to be.

Like —o, the intervening space betweefi and the output file format is optional; s@ elf and-felf are
both valid.

A complete list of the available output file formats can be given by issuing the commamnd-h£.

2.1.3 The-1 Option: Generating a Listing File

If you supply the-1 option to NASM, followed (with the usual optional space) by a file name, NASM will
generate a source-listing file for you, in which addresses and generated code are listed on the left, and the
actual source code, with expansions of multi-line macros (except those which specifically request no
expansion in source listings: see section 4.3.11) on the right. For example:

nasm —-f elf myfile.asm -1 myfile.lst

If a list file is selected, you may turn off listing for a section of your source mithst -1, and turn it back
onwith [1ist +1, (the default, obviously). There is no "user form" (without the brackets). This can be used
to list only sections of interest, avoiding excessively long listings.

2.1.4 The-M Option: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This can be redirected to a file for
further processing. For example:

nasm -M myfile.asm > myfile.dep

2.1.5 The-MG Option: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This differs fraroghien in that if
a nonexisting file is encountered, it is assumed to be a generated file and is added to the dependency list
without a prefix.

2.1.6 The-MF Option: Set Makefile Dependency File

This option can be used with the&! or -MG options to send the output to a file, rather than to stdout. For
example:

nasm -M -MF myfile.dep myfile.asm

2.1.7 The-MD Option: Assemble and Generate Dependencies

The -MD option acts as the combination of the and -MF options (i.e. a filename has to be specified.)
However, unlike the-M or -MG options,—MD doesnot inhibit the normal operation of the assembler. Use this
to automatically generate updated dependencies with every assembly session. For example:

nasm —-f elf -o myfile.o -MD myfile.dep myfile.asm
2.1.8 The-MT Option: Dependency Target Name

The -MT option can be used to override the default name of the dependency target. This is normally the same
as the output filename, specified by the option.

2.1.9 The-MQ Option: Dependency Target Name (Quoted)

The —-MQ option acts as theMT option, except it tries to quote characters that have special meaning in
Makefile syntax. This is not foolproof, as not all characters with special meaning are quotable in Make. The
default output (if no-MT or —MQ option is specified) is automatically quoted.

2.1.10 The-MP Option: Emit phony targets

When used with any of the dependency generation options;Mheption causes NASM to emit a phony
target without dependencies for each header file. This prevents Make from complaining if a header file has
been removed.

2.1.11 The-F Option: Selecting a Debug Information Format

This option is used to select the format of the debug information emitted into the output file, to be used by a
debugger (omill be). Prior to version 2.03.01, the use of this switchndilenable output of the selected

debug info format. Use-g, see section 2.1.12, to enable output. Versions 2.03.01 and later automatically
enable-g if —F is specified.

A complete list of the available debug file formats for an output format can be seen by issuing the command
nasm —-f <format> -y. Not all output formats currently support debugging output. See section 2.1.26.

This should not be confused with thé dbg output format option which is not built into NASM by default.
For information on how to enable it when building from the sources, see section 7.14.

2.1.12 The-g Option: Enabling Debug Information.

This option can be used to generate debugging information in the specified format. See section 2.1.11. Using
—g without -F results in emitting debug info in the default format, if any, for the selected output format. If no
debug information is currently implemented in the selected output forrpag,silently ignored

2.1.13 The-x Option: Selecting an Error Reporting Format

This option can be used to select an error reporting format for any error messages that might be produced by
NASM.

Currently, two error reporting formats may be selected. They arextiie option and the-xgnu option. The
GNU format is the default and looks like this:

filename.asm:65: error: specific error message

21

wherefilename.asm is the name of the source file in which the error was deteéteds the source file
line number on which the error was detectedror is the severity of the error (this could berning),
andspecific error message is a more detailed text message which should help pinpoint the exact

problem.

The other format, specified byxvc is the style used by Microsoft Visual C++ and some other programs. It
looks like this:

filename.asm(65) : error: specific error message

where the only difference is that the line number is in parentheses instead of being delimited by colons.

See also th&isual C++ output format, section 7.5.

2.1.14 The-z Option: Send Errors to a File

UnderMs-DOS it can be difficult (though there are ways) to redirect the standard—error output of a program
to a file. Since NASM usually produces its warning and error messagesderrr, this can make it hard to
capture the errors if (for example) you want to load them into an editor.

NASM therefore provides thez option, taking a filename argument which causes errors to be sent to the
specified files rather than standard error. Therefore you can redirect the errors into a file by typing

nasm -Z myfile.err —-f obj myfile.asm

In earlier versions of NASM, this option was calle@, but it was changed sincet is an option
conventionally used for preprocessing only, with disastrous results. See section 2.1.20.

2.1.15 The-s Option: Send Errors to stdout

The —s option redirects error messages s¢odout rather thanstderr, so it can be redirected under
MS-DOS. To assemble the fileyfile.asm and pipe its output to th@ore program, you can type:

nasm -s —-f obj myfile.asm | more

See also thez option, section 2.1.14.

2.1.16 The-i Option: Include File Search Directories

When NASM sees theinclude or $pathsearch directive in a source file (see section 4.6.1, section
4.6.2 or section 3.2.3), it will search for the given file not only in the current directory, but also in any
directories specified on the command line by the use of theption. Therefore you can include files from a
macro library, for example, by typing

nasm —-ic:\macrolib\ —-f obj myfile.asm
(As usual, a space between and the path name is allowed, and optional).

NASM, in the interests of complete source—code portability, does not understand the file naming conventions
of the OS it is running on; the string you provide as an argument taithption will be prepended exactly as
written to the name of the include file. Therefore the trailing backslash in the above example is necessary.
Under Unix, a trailing forward slash is similarly necessary.

(You can use this to your advantage, if you're really perverse, by noting that the -eption will cause
%include "bar.i" to search for the fil€éoobar.i...)

If you want to define astandardinclude search path, similar tbusr/include on Unix systems, you
should place one or more directives in th&lASMENV environment variable (see section 2.1.28).

For Makefile compatibility with many C compilers, this option can also be specified. as

2.1.17 The-p Option: Pre-Include a File

NASM allows you to specify files to bere—includedinto your source file, by the use of the option. So
running

nasm myfile.asm —-p myinc.inc

is equivalent to runningasm myfile.asm and placing the directiveinclude "myinc.inc" at the
start of the file.

For consistency with theI, -D and-U options, this option can also be specified as

2.1.18 The-d Option: Pre-Define a Macro

Just as thep option gives an alternative to placirgnclude directives at the start of a source file, thie
option gives an alternative to placing@efine directive. You could code

nasm myfile.asm —-dFO00=100
as an alternative to placing the directive
$define FOO 100

at the start of the file. You can miss off the macro value, as well: the opdiono is equivalent to coding
$define FO0O0. This form of the directive may be useful for selecting assembly-time options which are then
tested usingifdef, for example-dDEBUG.

For Makefile compatibility with many C compilers, this option can also be specifien.as

2.1.19 The-u Option: Undefine a Macro

The —u option undefines a macro that would otherwise have been pre-defined, either automatically or by a
—p or —d option specified earlier on the command lines.

For example, the following command line:
nasm myfile.asm —-dFO0=100 —-uFOO

would result inf00 not being a predefined macro in the program. This is useful to override options specified
at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified.as

2.1.20 The-E Option: Preprocess Only

NASM allows the preprocessor to be run on its own, up to a point. Usinggtloption (which requires no
arguments) will cause NASM to preprocess its input file, expand all the macro references, remove all the
comments and preprocessor directives, and print the resulting file on standard output (or save it to a file, if the
—o option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions which
depend on the values of symbols: so code such as

%$assign tablesize ($-tablestart)

will cause an error in preprocess—only mode.

23

For compatiblity with older version of NASM, this option can also be written—-E in older versions of
NASM was the equivalent of the currert option, section 2.1.14.

2.1.21 The-a Option: Don’t Preprocess At Al

If NASM is being used as the back end to a compiler, it might be desirable to suppress preprocessing
completely and assume the compiler has already done it, to save time and increase compilation speeds. The
—a option, requiring no argument, instructs NASM to replace its powerful preprocessor with a stub
preprocessor which does nothing.

2.1.22 The-o Option: Specifying Multipass Optimization
Using the-0 option, you can tell NASM to carry out different levels of optimization. The syntax is:

* —00: No optimization. All operands take their long forms, if a short form is not specified, except
conditional jumps. This is intended to match NASM 0.98 behavior.

e —01: Minimal optimization. As above, but immediate operands which will fit in a signed byte are
optimized, unless the long form is specified. Conditional jumps default to the long form unless otherwise
specified.

e —0x (where x is the actual letterx): Multipass optimization. Minimize branch offsets and signed
immediate bytes, overriding size specification unlessstheict keyword has been used (see section
3.7). For compatibility with earlier releases, the lettemay also be any number greater than one. This
number has no effect on the actual number of passes.

The-0x mode is recommended for most uses, and is the default since NASM 2.09.

Note that this is a capital, and is different from a smadl, which is used to specify the output file name. See
section 2.1.1.

2.1.23 The-t Option: Enable TASM Compatibility Mode

NASM includes a limited form of compatibility with BorlandisasM. When NASM’'s—-t option is used, the
following changes are made:

* local labels may be prefixed witie instead of.

« size override is supported within brackets. In TASM compatible mode, a size override inside square
brackets changes the size of the operand, and not the address type of the operand as it does in NASM
syntax. E.gmov eax, [DWORD wval] is valid syntax in TASM compatibility mode. Note that you lose
the ability to override the default address type for the instruction.

e unprefixed forms of some directives supported-d, elif, else, endif, if, ifdef, ifdifi,
ifndef, include, local)

2.1.24 The-w and -w Options: Enable or Disable Assembly Warnings

NASM can observe many conditions during the course of assembly which are worth mentioning to the user,
but not a sufficiently severe error to justify NASM refusing to generate an output file. These conditions are
reported like errors, but come up with the word ‘warning’ before the message. Warnings do not prevent
NASM from generating an output file and returning a success status to the operating system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the user.
Therefore NASM supports thew command-line option, which enables or disables certain classes of
assembly warning. Such warning classes are described by a name, for exaptp@—labels; you can

enable warnings of this class by the command-line optieRorphan—-labels and disable it by
-w—orphan-labels.

The suppressible warning classes are:

macro—params Covers warnings about multi-line macros being invoked with the wrong number of
parameters. This warning class is enabled by default; see section 4.3.1 for an example of why you might
want to disable it.

macro—selfref warns if a macro references itself. This warning class is disabled by default.

macro—defaults warns when a macro has more default parameters than optional parameters. This
warning class is enabled by default; see section 4.3.5 for why you might want to disable it.

orphan—-labels covers warnings about source lines which contain no instruction but define a label
without a trailing colon. NASM warns about this somewhat obscure condition by default; see section 3.1
for more information.

number—overflow COvVers warnings about numeric constants which don't fit in 64 bits. This warning
class is enabled by default.

gnu-elf-extensions warns if 8—bit or 16—bit relocations are used-ifi elf format. The GNU
extensions allow this. This warning class is disabled by default.

float—overflow warns about floating point overflow. Enabled by default.

float—denorm warns about floating point denormals. Disabled by default.
float—underflow warns about floating point underflow. Disabled by default.
float—toolong warns about too many digits in floating—point numbers. Enabled by default.
user controlsswarning directives (see section 4.9). Enabled by default.

lock warns about.OCK prefixes on unlockable instructions. Enabled by default.

hle warns about invalid use of the HHRACQUIRE or XRELEASE prefixes. Enabled by default.

bnd warns about ineffective use of tB&iD prefix when a relaxed form of jmp instruction becomes jmp
short form. Enabled by default.

error causes warnings to be treated as errors. Disabled by default.

all is an alias forall suppressible warning classes (not includingror). Thus,-w+all enables all
available warnings.

In addition, you can set warning classes across sections. Warning classes may be enabled with
[warning +warning-name], disabled with[warning -warning-name] or reset to their original
value with [warning *warning—name]. No "user form" (without the brackets) exists.

Since version 2.00, NASM has also supported the gcc-like sytaarning and -Wno-warning
instead of-w+warning and-w—-warning, respectively.

2.1.25 The-v Option: Display Version Info

Typing NASM —v will display the version of NASM which you are using, and the date on which it was
compiled.

You will need the version number if you report a bug.

25

2.1.26 The-y Option: Display Available Debug Info Formats

Typingnasm —-f <option> -y will display a list of the available debug info formats for the given output
format. The default format is indicated by an asterisk. For example:

nasm —-f elf -y

valid debug formats for ’"elf32’ output format are
(" *" denotes default):
* stabs ELF32 (1386) stabs debug format for Linux
dwarf elf32 (i386) dwarf debug format for Linux

2.1.27 The--prefix and ——post£fix Options.

The —-prefix and ——postfix options prepend or append (respectively) the given argument to all
global or extern variables. E.g-——prefix _ will prepend the underscore to all global and external
variables, as C sometimes (but not always) likes it.

2.1.28 TheNaSMENV Environment Variable

If you define an environment variable call@dsMENV, the program will interpret it as a list of extra
command-line options, which are processed before the real command line. You can use this to define
standard search directories for include files, by puttihgptions in thelASMENV variable.

The value of the variable is split up at white space, so that the valueic: \nasmlib\ will be treated as

two separate options. However, that means that the valNAME="my name" won't do what you might

want, because it will be split at the space and the NASM command-line processing will get confused by the
two nonsensical wordsdNAME="my andname".

To get round this, NASM provides a feature whereby, if you beginAsENV environment variable with

some character that isn't a minus sign, then NASM will treat this character as the separator character for
options. So setting thRASMENV variable to the value-s!-ic:\nasmlib\ is equivalent to setting it to

-s —ic:\nasmlib\, but!-dNAME="my name" will work.

This environment variable was previously calledsM. This was changed with version 0.98.31.

2.2 Quick Start for MASM Users

If you're used to writing programs with MASM, or with TASM in MASM-compatible (non-Ideal) mode, or
with a86, this section attempts to outline the major differences between MASM'’s syntax and NASM'’s. If
you're not already used to MASM, it's probably worth skipping this section.

2.2.1 NASM Is Case-Sensitive

One simple difference is that NASM is case—sensitive. It makes a difference whether you call ydisdabel

Foo Or FOO. If you're assembling t@os or 0s/2 .0BJ files, you can invoke thgPPERCASE directive
(documented in section 7.4) to ensure that all symbols exported to other code modules are forced to be upper
case; but even thewjthin a single module, NASM will distinguish between labels differing only in case.

2.2.2 NASM Requires Square Brackets For Memory References

NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it should be
possible, as far as is practical, for the user to look at a single line of NASM code and tell what opcode is
generated by it. You can't do this in MASM: if you declare, for example,

26

foo equ 1
bar dw 2

then the two lines of code

mov ax, foo
mov ax,bar

generate completely different opcodes, despite having identical-looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references. The rule is
simply that any access to thententsof a memory location requires square brackets around the address, and
any access to theddressof a variable doesn’t. So an instruction of the farev ax, foo will alwaysrefer

to a compile—time constant, whether it's@puU or the address of a variable; and to accessdht&entsof the
variablebar, you must codewov ax, [bar].

This also means that NASM has no need for MASMBFSET keyword, since the MASM code
mov ax,offset bar means exactly the same thing as NASM&sy ax,bar. If you're trying to get

large amounts of MASM code to assemble sensibly under NASM, you can always code
$idefine offset to make the preprocessor treattiteSET keyword as a ho-op.

This issue is even more confusingdl 6, where declaring a label with a trailing colon defines it to be a
‘label’ as opposed to a ‘variable’ and causé% to adopt NASM-style semantics; soda6, mov ax, var

has different behaviour depending on whether was declared asar: dw 0 (a label) orvar dw 0 (a
word-size variable). NASM is very simple by comparisererythingis a label.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by MASM and its
clones, such asov ax,table[bx], where a memory reference is denoted by one portion outside square
brackets and another portion inside. The correct syntax for the abmwe isax, [table+bx]. Likewise,

mov ax,es:[di] iswrong andnov ax, [es:di] is right.

2.2.3 NASM Doesn't Store Variable Types

NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM wiill
remember, on seeingar dw 0, that you declare¢tar as a word-size variable, and will then be able to fill

in the ambiguity in the size of the instructimav var, 2, NASM will deliberately remember nothing about

the symbok-ar except where it begins, and so you must explicitly ¢agle word [var], 2.

For this reason, NASM doesn’t support thebs, MOVS, STOS, SCAS, CMPS, INS, or QUTS instructions,
but only supports the forms such &SDsB, MOVSW, and SCASD, which explicitly specify the size of the
components of the strings being manipulated.

2.2.4 NASM Doesn'tasSSUME

As part of NASM’s drive for simplicity, it also does not support AtssUME directive. NASM will not keep
track of what values you choose to put in your segment registers, and willanggaraticallygenerate a
segment override prefix.

2.2.5 NASM Doesn’'t Support Memory Models

NASM also does not have any directives to support different 16—bit memory models. The programmer has to
keep track of which functions are supposed to be called with a far call and which with a near call, and is
responsible for putting the correct formrET instruction RETN or RETF; NASM acceptRET itself as an
alternate form forRETN); in addition, the programmer is responsible for coding CALL FAR instructions

27

where necessary when callirexternal functions, and must also keep track of which external variable
definitions are far and which are near.

2.2.6 Floating—Point Differences

NASM uses different names to refer to floating—point registers from MASM: where MASM would call them
ST (0), ST (1) and so on, and86 would call them simply0, 1 and so on, NASM chooses to call them
st0, stl etc.

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as
MASM-compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was based on a
misunderstanding by the authors.

2.2.7 Other Differences

For historical reasons, NASM uses the keywandorD where MASM and compatible assemblers use
TBYTE.

NASM does not declare uninitialized storage in the same way as MASM: where a MASM programmer might
usestack db 64 dup (2?), NASM requiresstack resb 64, intended to be read as ‘reserve 64
bytes’. For a limited amount of compatibility, since NASM treatss a valid character in symbol names, you
can code? equ 0 and then writingdw 2 will at least do something vaguely usefotip is still not a
supported syntax, however.

In addition to all of this, macros and directives work completely differently to MASM. See chapter 4 and
chapter 6 for further detalils.

Chapter 3: The NASM Language

3.1 Layout of a NASM Source Line

Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor directive or an
assembler directive: see chapter 4 and chapter 6) some combination of the four fields

label: instruction operands ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label, an
instruction and a comment is allowed. Of course, the operand field is either required or forbidden by the
presence and nature of the instruction field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the next line is
considered to be a part of the backslash—ended line.

NASM places no restrictions on white space within a line: labels may have white space before them, or
instructions may have no space before them, or anything. The colon after a label is also optional. (Note that
this means that if you intend to cotledsb alone on a line, and typeodab by accident, then that's still a

valid source line which does nothing but define a label. Running NASM with the command-line option
-w+orphan-1labels will cause it to warn you if you define a label alone on a line without a trailing colon.)

Valid characters in labels are letters, numbers, #, @, ~, ., and?. The only characters which may be used
as thefirst character of an identifier are letters,(with special meaning: see section 3.9)and 2. An
identifier may also be prefixed with @ to indicate that it is intended to be read as an identifier and not a
reserved word; thus, if some other module you are linking with defines a symboleadegiou can refer to
$Seax in NASM code to distinguish the symbol from the register. Maximum length of an identifier is 4095
characters.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU instructions,
MMX instructions and even undocumented instructions are all supported. The instruction may be prefixed by
LOCK, REP, REPE/REPZ, REPNE/REPNZ, XACQUIRE/XRELEASE Or BND/NOBND, in the usual way.

Explicit address—size and operand-size prefixes, A32, A64, 016 and 032, 064 are provided — one
example of their use is given in chapter 10. You can also use the name of a segment register as an instruction
prefix: codinges mov [bx], ax is equivalent to codingiov [es:bx],ax. We recommend the latter

syntax, since it is consistent with other syntactic features of the language, but for instructionsisucdBas

which has no operands and yet can require a segment override, there is no clean syntactic way to proceed
apart fromes lodsb.

An instruction is not required to use a prefix: prefixes suchsas.32, LOCK or REPE can appear on a line
by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a number of pseudo-instructions, described in
section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the register name
(e.g.ax, bp, ebx, cr0: NASM does not use thgas—style syntax in which register names must be prefixed

by a % sign), or they can be effective addresses (see section 3.3), constants (section 3.4) or expressions
(section 3.5).

29

For x87 floating—point instructions, NASM accepts a wide range of syntaxes: you can use two—operand forms
like MASM supports, or you can use NASM’s native single—operand forms in most cases. For example, you

can code:
fadd stl ; this sets st0 := st0 + stl
fadd st0,stl ; so does this
fadd stl,st0 ; this sets stl := stl + stO0
fadd to stl ; so does this

Almost any x87 floating—point instruction that references memory must use one of the ppefd®s,
QWORD or TWORD to indicate what size of memory operand it refers to.

3.2 Pseudo-Instructions

Pseudo-instructions are things which, though not real x86 machine instructions, are used in the instruction
field anyway because that's the most convenient place to put them. The current pseudo-instruatiens are
DW, DD, DQ, DT, DO, DY andDz; their uninitialized counterpart®&ESB, RESW, RESD, RESQ, REST, RESO,

RESY andrRESZ; the INCBIN command, th&QU command, and theIMES prefix.

3.2.1 pB and Friends: Declaring Initialized Data

DB, DW, DD, DQ, DT, DO, DY andDZ are used, much as in MASM, to declare initialized data in the output file.
They can be invoked in a wide range of ways:

db 0x55 ; Just the byte 0x55

db 0x55, 0x56, 0x57 ; three bytes in succession

db ra’,0x55 ; character constants are OK

db "hello’,13,10,’S’ ; so are string constants

dw 0x1234 ; 0x34 0x12

dw ra’ ; 0x61 0x00 (it’s just a number)
dw "ab’ ; 0x61 0x62 (character constant)
dw "abce’ ; 0x61 0x62 0x63 0x00 (string)
dd 0x12345678 ; 0x78 0x56 0x34 0x12

dd 1.234567e20 ; floating-point constant

dg 0x123456789%abcdef0 ; eight byte constant

dg 1.234567e20 ; double-precision float

dt 1.234567e20 ; extended-precision float

DT, DO, DY andDz do not accept numeric constants as operands.

3.2.2 RESB and Friends: Declaring Uninitialized Data

RESB, RESW, RESD, RESQ, REST, RESO, RESY andRESZ are designed to be used in the BSS section of a
module: they declaraninitialized storage space. Each takes a single operand, which is the number of bytes,
words, doublewords or whatever to reserve. As stated in section 2.2.7, NASM does not support the
MASM/TASM syntax of reserving uninitialized space by writing 2 or similar things: this is what it does
instead. The operand t@a SB-type pseudo-instruction iscatical expressionsee section 3.8.

For example:
buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 ; reserve a word

realarray resq 10 ; array of ten reals

ymmval: resy 1 ; one YMM register
zmmvals: resz 32 ; 32 ZMM registers

3.2.3 INCBIN: Including External Binary Files

INCBIN is borrowed from the old Amiga assembler DevPac: it includes a binary file verbatim into the output
file. This can be handy for (for example) including graphics and sound data directly into a game executable
file. It can be called in one of these three ways:

incbin "file.dat" ; include the whole file
incbin "file.dat",1024 ; skip the first 1024 bytes
incbin "file.dat",1024,512 ; skip the first 1024, and

; actually include at most 512

INCBIN is both a directive and a standard macro; the standard macro version searches for the file in the
include file search path and adds the file to the dependency lists. This macro can be overridden if desired.

3.2.4 EQU: Defining Constants

EQU defines a symbol to a given constant value: wihgu is used, the source line must contain a label. The
action ofEQU is to define the given label name to the value of its (only) operand. This definition is absolute,
and cannot change later. So, for example,

message db "hello, world’
msglen equ S-message

definesmsglen to be the constant 12sglen may not then be redefined later. This is not a preprocessor
definition either: the value ohsglen is evaluatedonce using the value of (see section 3.5 for an
explanation of$) at the point of definition, rather than being evaluated wherever it is referenced and using the
value ofs at the point of reference.

3.2.5 TIMES: Repeating Instructions or Data

The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as NASM's
equivalent of th@Up syntax supported by MASM-compatible assemblers, in that you can code

zerobuf: times 64 db O

or similar things; butTIMES is more versatile than that. The argumentrttMES is not just a numeric
constant, but a numeraxpressionso you can do things like

buffer: db "hello, world’
times 64-$+buffer db 7 7’

which will store exactly enough spaces to make the total lengthhbfer up to 64. FinallyTIMES can be
applied to ordinary instructions, so you can code trivial unrolled loops in it:

times 100 movsb

Note that there is no effective difference betweames 100 resb 1 andresb 100, except that the
latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand t@IMES is a critical expression (section 3.8).

Note also thatrIMES can't be applied to macros: the reason for this is thaES is processed after the
macro phase, which allows the argumenttoES to contain expressions such@&s-s+buffer as above.
To repeat more than one line of code, or a complex macro, use the prepreeessdirective.

31

32

3.3 Effective Addresses

An effective address is any operand to an instruction which references memory. Effective addresses, in
NASM, have a very simple syntax: they consist of an expression evaluating to the desired address, enclosed in
square brackets. For example:

wordvar dw 123
mov ax, [wordvar]
mov ax, [wordvar+1]
mov ax, [es:wordvar+bx]

Anything not conforming to this simple system is not a valid memory reference in NASM, for example
es:wordvar [bx].

More complicated effective addresses, such as those involving more than one register, work in exactly the
same way:

mov eax, [ebx*2+ecx+offset]
mov ax, [bp+di+8]

NASM is capable of doing algebra on these effective addresses, so that things which don't neloedsarily
legal are perfectly all right:

mov eax, [ebx*5] ; assembles as [ebx*4+ebx]
mov eax, [labell*2-1label2] ; ie [labell+ (labell-label2)]

Some forms of effective address have more than one assembled form; in most such cases NASM will generate
the smallest form it can. For example, there are distinct assembled forms for the 32-bit effective addresses
[eax*2+0] and [eax+eax], and NASM will generally generate the latter on the grounds that the former
requires four bytes to store a zero offset.

NASM has a hinting mechanism which will causeax+ebx] and [ebx+eax] to generate different
opcodes; this is occasionally useful becalisei+ebp] and [ebp+esi] have different default segment
registers.

However, you can force NASM to generate an effective address in a particular form by the use of the
keywordsBYTE, WORD, DWORD andNOSPLIT. If you need[eax+3] to be assembled using a double-word
offset field instead of the one byte NASM will normally generate, you can ¢aderd eax+3].
Similarly, you can force NASM to use a byte offset for a small value which it hasn’t seen on the first pass (see
section 3.8 for an example of such a code fragment) by UsiRgte eax+offset]. As special cases,
[byte eax] will code [eax+0] with a byte offset of zero, anfldword eax] will code it with a
double-word offset of zero. The normal forfisax 1, will be coded with no offset field.

The form described in the previous paragraph is also useful if you are trying to access data in a 32-bit
segment from within 16 bit code. For more information on this see the section on mixed-size addressing
(section 10.2). In particular, if you need to access data with a known offset that is larger than will fit in a
16-bit value, if you don't specify that it is a dword offset, nasm will cause the high word of the offset to be
lost.

Similarly, NASM will split [eax*2] into [eax+eax] because that allows the offset field to be absent and
space to be saved; in fact, it will also spiiax*2+offset] into [eax+eax+offset]. You can combat
this behaviour by the use of th®SPLIT keyword: [nosplit eax*2] will force [eax*2+0] to be
generated literally.[nosplit eax*1] also has the same effect. In another way, a split EA form

[0, eax*2] can be used, too. HowevelpSPLIT in [nosplit eax+eax] will be ignored because
user’s intention here is considered[asax+eax].

In 64-bit mode, NASM will by default generate absolute addressesrRThekeyword makes it produce
RIP-relative addresses. Since this is frequently the normally desired behaviour, seeAlie. T directive
(section 6.2). The keyworsBS overridesREL.

A new form of split effective addres syntax is also supported. This is mainly intended for mib operands as
used by MPX instructions, but can be used for any memory reference. The basic concept of this form is
splitting base and index.

mov eax, [ebx+8,ecx*4] ; ebx=base, ecx=index, 4=scale, 8=disp

For mib operands, there are several ways of writing effective address depending on the tools. NASM supports
all currently possible ways of mib syntax:

; bndstx
; next 5 lines are parsed same
; base=rax, index=rbx, scale=1, displacement=3

bndstx [rax+0x3, rbx], bnd0 ; NASM - split EA

bndstx [rbx*l+rax+0x3], bnd0 ; GAS — ’'*1’ indecates an index reg
bndstx [rax+rbx+3], bnd0 ; GAS — without hints

bndstx [rax+0x3], bnd0, rbx ; ICC-1

bndstx [rax+0x3], rbx, bnd0 ; ICC-2

When broadcasting decorator is used, the opsize keyword should match the size of each element.

VDIVPS zmm4, zmmb5, dword [rbx]{ltolé6} ; single-precision float
VDIVPS zmm4, zmm5, zword [rbx] ; packed 512 bit memory

3.4 Constants
NASM understands four different types of constant: numeric, character, string and floating—point.
3.4.1 Numeric Constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of number bases,
in a variety of ways: you can suffegx or X, D or T, Q or O, andB or Y for hexadecimal, decimal, octal and
binary respectively, or you can prefixx, for hexadecimal in the style of C, or you can prefixfor
hexadecimal in the style of Borland Pascal or Motorola Assemblers. Note, though, tisaptbix does
double duty as a prefix on identifiers (see section 3.1), so a hex number prefixedswstgramust have a

digit after the$ rather than a letter. In addition, current versions of NASM accept the prefifor
hexadecimalpd or 0t for decimal,0o or 0g for octal, anddb or 0y for binary. Please note that unlike C, a

0 prefix by itself doesotimply an octal constant!

Numeric constants can have underscorgsnterspersed to break up long strings.

Some examples (all producing exactly the same code):

mov ax, 200 ; decimal

mov ax, 0200 ; still decimal

mov ax,0200d ; explicitly decimal

mov ax, 0d200 ; also decimal

mov ax, 0c8h ; hex

mov ax, $0c8 ; hex again: the 0 is required

33

34

mov ax, 0xc8 ; hex yet again

mov ax, 0hc8 ; still hex

mov ax,310qg ; octal

mov ax, 3100 ; octal again

mov ax, 00310 ; octal yet again

mov ax,0g310 ; octal yet again

mov ax,11001000b ; binary

mov ax,1100_1000b ; same binary constant

mov ax,1100_1000y ; same binary constant once more
mov ax,0pb1100_1000 ; same binary constant yet again
mov ax,0y1100_1000 ; same binary constant yet again

3.4.2 Character Strings

A character string consists of up to eight characters enclosed in either single quotes)(double quotes
("...") or backquotes Y. .. “). Single or double quotes are equivalent to NASM (except of course that
surrounding the constant with single quotes allows double quotes to appear within it and vice versa); the
contents of those are represented verbatim. Strings enclosed in backquotes support\Eestgpes for
special characters.

The following escape sequences are recognized by backquoted strings:

\’ single quote (')

\" double quote (")

\ Y backquote (')

\\ backslash (\)

\? question mark (?)

\a BEL (ASCII 7)

\b BS (ASCII 8)

\t TAB (ASCII 9)

\n LF (ASCII 10)

\v VT (ASCII 11)

\f FF (ASCII 12)

\r CR (ASCII 13)

\e ESC (ASCII 27)

\377 Up to 3 octal digits - literal byte

\xFF Up to 2 hexadecimal digits - literal byte
\ul234 4 hexadecimal digits - Unicode character

\U12345678 8 hexadecimal digits - Unicode character

All other escape sequences are reserved. Note\ thaheaning alUL character (ASCII 0), is a special case
of the octal escape sequence.

Unicode characters specified wittu or \U are converted to UTF-8. For example, the following lines are all

equivalent:
db ‘\u263a‘ ; UTF-8 smiley face
db ‘\xe2\x98\xba‘ ; UTF-8 smiley face
db O0E2h, 098h, O0OBAh ; UTF-8 smiley face

3.4.3 Character Constants

A character constant consists of a string up to eight bytes long, used in an expression context. It is treated as if
it was an integer.

A character constant with more than one byte will be arranged with little—endian order in mind: if you code
mov eax,’abcd’

then the constant generated is natt1626364, but 0x64636261, so that if you were then to store the
value into memory, it would readbcd rather thandcba. This is also the sense of character constants
understood by the Pentiun®UID instruction.

3.4.4 String Constants

String constants are character strings used in the context of some pseudo-instructions, naradintiig
andINCBIN (where it represents a filename.) They are also used in certain preprocessor directives.

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum-size character constants for the conditions. So the following are equivalent:

db "hello’ ; string constant
db "h',’e’","1","1","0"’ ; equivalent character constants

And the following are also equivalent:

dd "ninechars’ ; doubleword string constant
dd "nine’,’char’,’s’ ; becomes three doublewords
db "ninechars’,0,0,0 ; and really looks like this

Note that when used in a string—supporting context, quoted strings are treated as a string constants even if
they are short enough to be a character constant, because otherwise’ would have the same effect as

db ’a’, which would be silly. Similarly, three—character or four—character constants are treated as strings
when they are operandsii@, and so forth.

3.4.5 Unicode Strings

The special operators utfl6__, _ utfl6le_ , _ utflébe_ , __ utf32_ , _ utf32le__ and
__utf32be__ allows definition of Unicode strings. They take a string in UTF-8 format and converts it to
UTF-16 or UTF-32, respectively. Unless the forms are specified, the output is littleendian.

For example:
$define u(x) __utfle_ (x)
$define w(x) __utf32_ (x)
dw u(’C:\WINDOWS’), O ; Pathname in UTF-16

dd w('A + B = \u206a‘), O ; String in UTF-32

The UTF operators can be applied either to strings passed toBtti@mily instructions, or to character
constants in an expression context.

3.4.6 Floating—Point Constants

Floating—point constants are acceptable only as arguments tow, DD, DQ, DT, andDO, or as arguments to
the special operators float8_ , _ floatl6_ ,__ float32_ ,__ float64_ ,__ float80m__,
__float80e_ , floatl1281__,and_ _floatl28h__ .

35

36

Floating—point constants are expressed in the traditional form: digits, then a period, then optionally more
digits, then optionally ag followed by an exponent. The period is mandatory, so that NASM can distinguish
betweerndd 1, which declares an integer constant, add 1 . 0 which declares a floating—point constant.

NASM also support C99-style hexadecimal floating—point; hexadecimal digits, period, optionally more
hexadeximal digits, then optionallyrafollowed by abinary (not hexadecimal) exponent in decimal notation.
As an extension, NASM additionally supports titeands$ prefixes for hexadecimal, as well binary and octal
floating—point, using théb or 0y and0o or 0q prefixes, respectively.

Underscores to break up groups of digits are permitted in floating—point constants as well.

Some examples:

db -0.2 ; "Quarter precision"

dw -0.5 ; IEEE 754r/SSE5 half precision
dd 1.2 ; an easy one

dd 1.222_222_222 ; underscores are permitted
dd Ox1p+2 ; 1.0x272 = 4.0

dg Ox1p+32 ; 1.0x2732 = 4 294 967 296.0
dg 1.el0 ; 10 000 000 000.0

dg 1.e+10 ; synonymous with 1.el0

dg l.e-10 ; 0.000 000 000 1

dt 3.141592653589793238462 ; pi

do 1.e4+4000 ; IEEE 754r quad precision

The 8-bit "quarter—precision" floating—point format is sign:exponent:mantissa = 1:4:3 with an exponent bias
of 7. This appears to be the most frequently used 8-bit floating—point format, although it is not covered by
any formal standard. This is sometimes called a "minifloat.”

The special operators are used to produce floating—point numbers in other contexts. They produce the binary
representation of a specific floating—point number as an integer, and can use anywhere integer constants are
used in an expression. float80m__ and __ float80e__ produce the 64-hit mantissa and 16-bit
exponent of an 80-bit floating—point number, andfloat1281___ and__float128h__ produce the

lower and upper 64-bit halves of a 128-bit floating—point number, respectively.

For example:
mov rax,__float64__ (3.141592653589793238462)

... would assign the binary representation of pi as a 64-bit floating point numbe&®aixtadrhis is exactly
equivalent to:

mov rax, 0x400921£fb54442d18

NASM cannot do compile—-time arithmetic on floating—point constants. This is because NASM is designed to
be portable — although it always generates code to run on x86 processors, the assembler itself can run on any
system with an ANSI C compiler. Therefore, the assembler cannot guarantee the presence of a floating—point
unit capable of handling the Intel number formats, and so for NASM to be able to do floating arithmetic it
would have to include its own complete set of floating—point routines, which would significantly increase the
size of the assembiler for very little benefit.

The special tokens_Infinity__, _ QNaN__ (or __NaN__) and__SNaN___ can be used to generate
infinities, quiet NaNs, and signalling NaNs, respectively. These are normally used as macros:

$define Inf _ Infinity_
%$define NaN __ QNaN___
dg +1.5, -Inf, NaN ; Double-precision constants

Thesuse fp standard macro package contains a set of convenience macros. See section 5.3.

3.4.7 Packed BCD Constants

x87-style packed BCD constants can be used in the same contexts as 80-bit floating—point numbers. They
are suffixed withpo or prefixed withOp, and can include up to 18 decimal digits.

As with other numeric constants, underscores can be used to separate digits.
For example:

dt 12_345_678_901_245_678p
dt -12_345_678_901_245_678p
dt +0p33
dt 33p

3.5 Expressions

Expressions in NASM are similar in syntax to those in C. Expressions are evaluated as 64-bit integers which
are then adjusted to the appropriate size.

NASM supports two special tokens in expressions, allowing calculations to involve the current assembly
position: thes and$$ tokens.s evaluates to the assembly position at the beginning of the line containing the
expression; so you can code an infinite loop using $. $$ evaluates to the beginning of the current
section; so you can tell how far into the section you are by Usings) .

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.

3.5.1 |: Bitwise OR Operator

The | operator gives a bitwise OR, exactly as performed bythenachine instruction. Bitwise OR is the
lowest—priority arithmetic operator supported by NASM.

3.5.2 ~: Bitwise XOR Operator

~ provides the bitwise XOR operation.
3.5.3 &: Bitwise AND Operator

& provides the bitwise AND operation.

3.5.4 << and >>: Bit Shift Operators

<< gives a bit-shift to the left, just as it does in C.58& 3 evaluates to 5 times 8, or 40: gives a bit-shift
to the right; in NASM, such a shift Elwaysunsigned, so that the bits shifted in from the left—-hand end are
filled with zero rather than a sign—extension of the previous highest bit.

3.5.5 + and -: Addition and Subtraction Operators

The + and- operators do perfectly ordinary addition and subtraction.

37

38

3.5.6

* /,//,% and %$%: Multiplication and Division

* is the multiplication operatoy. and// are both division operatorg:is unsigned division and/ is signed
division. Similarly,% and%% provide unsigned and signed modulo operators respectively.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo operator.

Since thes character is used extensively by the macro preprocessor, you should ensure that both the signed
and unsigned modulo operators are followed by white space wherever they appear.

3.5.7 Unary Operators

3.6

The highest—priority operators in NASM’s expression grammar are those which only apply to one argument.
These are, -, ~, !, SEG, and the integer functions operators.

- negates its operand,does nothing (it's provided for symmetry witf), ~ computes the one’s complement
of its operand, is the logical negation operator.

SEG provides the segment address of its operand (explained in more detail in section 3.6).

A set of additional operators with leading and trailing double underscores are used to implement the integer
functions of thei func macro package, see section 5.4.

SEG and WRT

When writing large 16-bit programs, which must be split into multiple segments, it is often necessary to be
able to refer to the segment part of the address of a symbol. NASM suppatsstbperator to perform this
function.

The SEG operator returns thpreferred segment base of a symbol, defined as the segment base relative to
which the offset of the symbol makes sense. So the code

mov ax,seg symbol
mov es,ax
mov bx, symbol

will load £s : BX with a valid pointer to the symbelymbo1l.

Things can be more complex than this: since 16-bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one. NASM lets
you do this, by the use of thirT (With Reference To) keyword. So you can do things like

mov ax,weird_seg ; weird_seg is a segment base
mov es,ax
mov bx, symbol wrt weird_seg

to loades : BX with a different, but functionally equivalent, pointer to the symiyaibol.

NASM supports far (inter-segment) calls and jumps by means of the syaldx segment:offset,
wheresegment andoffset both represent immediate values. So to call a far procedure, you could code
either of

call (seg procedure) :procedure
call weird_seqg: (procedure wrt weird_seq)

(The parentheses are included for clarity, to show the intended parsing of the above instructions. They are not
necessary in practice.)

3.7

3.8

3.9

NASM supports the syntaxall far procedure as a synonym for the first of the above usages.
works identically tacALL in these examples.

To declare a far pointer to a data item in a data segment, you must code
dw symbol, seg symbol

NASM supports no convenient synonym for this, though you can always invent one using the macro
processor.

STRICT: Inhibiting Optimization

When assembling with the optimizer set to level 2 or higher (see section 2.1.22), NASM will use size
specifiers BYTE, WORD, DWORD, QWORD, TWORD, OWORD, YWORD oOr ZWORD), but will give them the
smallest possible size. The keywosdRICT can be used to inhibit optimization and force a particular
operand to be emitted in the specified size. For example, with the optimizer onpgarmsinl 6 mode,

push dword 33
is encoded in three bytes 6a 21, whereas
push strict dword 33
is encoded in six bytes, with a full dword immediate ope@hdes 21 00 00 00.

With the optimizer off, the same code (six bytes) is generated whether®he T keyword was used or not.

Critical Expressions

Although NASM has an optional multi-pass optimizer, there are some expressions which must be resolvable
on the first pass. These are cal&dtical Expressions

The first pass is used to determine the size of all the assembled code and data, so that the second pass, whe
generating all the code, knows all the symbol addresses the code refers to. So one thing NASM can’t handle is
code whose size depends on the value of a symbol declared after the code in question. For example,

times (label-$) db O
label: db "Where am I?’

The argument taIMES in this case could equally legally evaluate to anything at all; NASM will reject this
example because it cannot tell the size ofth®ES line when it first sees it. It will just as firmly reject the
slightly paradoxical code

times (label-$+1) db O
label: db "NOW where am I?’

in whichanyvalue for theTIMES argument is by definition wrong!

NASM rejects these examples by means of a concept calidtical expressionwhich is defined to be an
expression whose value is required to be computable in the first pass, and which must therefore depend only
on symbols defined before it. The argument tothEES prefix is a critical expression.

Local Labels

NASM gives special treatment to symbols beginning with a period. A label beginning with a single period is
treated as bocal label, which means that it is associated with the previous non-local label. So, for example:

39

40

labell ; some code

.loop
; some more code

jne .loop
ret

label2 ; some code

.loop
; some more code

jne .loop
ret

In the above code fragment, eatkE instruction jumps to the line immediately before it, because the two
definitions of . 1oop are kept separate by virtue of each being associated with the previous non-local label.

This form of local label handling is borrowed from the old Amiga assembler DevPac; however, NASM goes
one step further, in allowing access to local labels from other parts of the code. This is achieved by means of
defininga local label in terms of the previous non-local label: the first definitionlafop above is really

defining a symbol calledabell. loop, and the second defines a symbol callathe12.1loop. So, if you

really needed to, you could write

label3 ; some more code
; and some more

Jmp labell.loop

Sometimes it is useful — in a macro, for instance — to be able to define a label which can be referenced from
anywhere but which doesn't interfere with the normal local-label mechanism. Such a label can't be non-local
because it would interfere with subsequent definitions of, and references to, local labels; and it can’t be local
because the macro that defined it wouldn’t know the label's full name. NASM therefore introduces a third
type of label, which is probably only useful in macro definitions: if a label begins with the special.prefix

then it does nothing to the local label mechanism. So you could code

labell: ; a non—-local label

.local: ; this is really labell.local

..Qfoo0: ; this is a special symbol

label2: ; another non-local label

.local: ; this is really label2.local
Jjmp ..@foo ; this will jump three lines up

NASM has the capacity to define other special symbols beginning with a double period: for example,
..start is used to specify the entry point in thej output format (see section 7.4.6), imagebase is

used to find out the offset from a base address of the current imagewinrthe output format (see section
7.6.1). So just keep in mind that symbols beginning with a double period are special.

Chapter 4: The NASM Preprocessor

NASM contains a powerful macro processor, which supports conditional assembly, multi-level file inclusion,
two forms of macro (single-line and multi-line), and a ‘context stack’ mechanism for extra macro power.
Preprocessor directives all begin witk aign.

The preprocessor collapses all lines which end with a backslash (\) character into a single line. Thus:

$define THIS_VERY_LONG_MACRO_NAME_IS_DEFINED_TO \
THIS_VALUE

will work like a single-line macro without the backslash—newline sequence.
4.1 Single-Line Macros
4.1.1 The Normal Way:%define

Single-line macros are defined using ##=fine preprocessor directive. The definitions work in a similar
way to C; so you can do things like

$define ctrl 0x1F &
$define param(a,b) ((a)+(a)* (b))
mov byte [param(2,ebx)], ctrl ’'D’

which will expand to
mov byte [(2)+(2)*(ebx)], O0x1F & ’'D’

When the expansion of a single-line macro contains tokens which invoke another macro, the expansion is
performed at invocation time, not at definition time. Thus the code

%$define a (x) 1+b (x)
%$define b (x) 2*x
mov ax,a(8)

will evaluate in the expected waytov ax, 1+2*8, even though the mackowasn’t defined at the time of
definition of a.

Macros defined witlkdefine are case sensitive: afteiefine foo bar, only foo will expand tabar:
Foo or F0O will not. By using%idefine instead ofsdefine (the ‘i’ stands for ‘insensitive’) you can
define all the case variants of a macro at once, seth#fine foo bar would causeoo, Foo, FOO,
£00 and so on all to expandtar.

There is a mechanism which detects when a macro call has occurred as a result of a previous expansion of the
same macro, to guard against circular references and infinite loops. If this happens, the preprocessor will only
expand the first occurrence of the macro. Hence, if you code

41

42

%$define a (x) 1+a (x)

mov ax,a(3)

the macroa (3) will expand once, becoming+a (3), and will then expand no further. This behaviour can
be useful: see section 9.1 for an example of its use.

You can overload single—line macros: if you write

$define foo (x) 1+x
$define foo(x,y) l+x*y

the preprocessor will be able to handle both types of macro call, by counting the parameters you pass; so
foo (3) will becomel+3 whereasoo (ebx, 2) will becomel+ebx*2. However, if you define

$define foo bar

then no other definition of oo will be accepted: a macro with no parameters prohibits the definition of the
same name as a maaevith parameters, and vice versa.

This doesn't prevent single—line macros baiedefined you can perfectly well define a macro with
$define foo bar

and then re—define it later in the same source file with

$define foo baz

Then everywhere the macfwo is invoked, it will be expanded according to the most recent definition. This
is particularly useful when defining single-line macros witts s ign (see section 4.1.7).

You can pre—define single—line macros using the ‘—d’ option on the NASM command line: see section 2.1.18.

4.1.2 Resolvingkgdefine: $xdefine

To have a reference to an embedded single-line macro resolved at the time that the embedding macro is
defined as opposed to when the embedding macexp@ndedyou need a different mechanism to the one
offered bysdefine. The solution is to usexdefine, or it's case—insensitive counterpatixdefine.

Suppose you have the following code:

$define isTrue 1
$define isFalse isTrue
$define isTrue O

vall: db isFalse
$define isTrue 1

val2: db isFalse

In this caseyall is equal to 0, an¢tal2 is equal to 1. This is because, when a single-line macro is defined
usingsdefine, it is expanded only when it is called. AsFalse expands td sTrue, the expansion will
be the current value afsTrue. The first time it is called that is 0, and the second time it is 1.

If you wantedisFalse to expand to the value assigned to the embedded maaroue at the time that
isFalse was defined, you need to change the above code taxidkef ine.

$xdefine isTrue 1
$xdefine isFalse isTrue
$xdefine isTrue O

vall: db isFalse
$xdefine isTrue 1

val2: db isFalse

Now, each time that sFalse is called, it expands to 1, as that is what the embedded madroue
expanded to at the time theéFalse was defined.

4.1.3 Macro Indirection: $[...]

The $[...] construct can be used to expand macros in contexts where macro expansion would otherwise
not occur, including in the names other macros. For example, if you have a set of macrog eamgd
Foo32 andFoo64, you could write:

mov ax,Foo%[__ _BITS_] ; The Foo value

to use the builtin macro_BITS___ (see section 4.12.5) to automatically select between them. Similarly, the
two statements:

$xdefine Bar Quux ; Expands due to %xdefine

Q

$define Bar $[Quux] ; Expands due to %[...]
have, in fact, exactly the same effect.

%[...] concatenates to adjacent tokens in the same way that multi-line macro parameters do, see section
4.3.9 for details.

4.1.4 Concatenating Single Line Macro Tokensz+

Individual tokens in single line macros can be concatenated, to produce longer tokens for later processing.
This can be useful if there are several similar macros that perform similar functions.

Please note that a space is required afteiin order to disambiguate it from the syntaxi used in multiline
macros.

As an example, consider the following:

$define BDASTART 400h ; Start of BIOS data area
struc tBIOSDA ; its structure

.COMladdr RESW 1

.COM2addr RESW 1

; ..and so on
endstruc

Now, if we need to access the elements of tBIOSDA in different places, we can end up with:

mov ax, BDASTART + tBIOSDA.COMladdr
mov bx, BDASTART + tBIOSDA.COM2addr

This will become pretty ugly (and tedious) if used in many places, and can be reduced in size significantly by
using the following macro:

43

44

; Macro to access BIOS variables by their names (from tBDA) :
$define BDA (x) BDASTART + tBIOSDA. %+ X
Now the above code can be written as:

mov ax, BDA (COMladdr)
mov bx, BDA (COM2addr)

Using this feature, we can simplify references to a lot of macros (and, in turn, reduce typing errors).
4.1.5 The Macro Name Itselfs? and $??

The special symbols? and%?2? can be used to reference the macro name itself inside a macro expansion,
this is supported for both single-and multi-line macros.refers to the macro name mwvoked whereas

%27 refers to the macro name dsclared The two are always the same for case—sensitive macros, but for
case-insensitive macros, they can differ.

For example:

%$idefine Foo mov %7?,%?7
foo
FOO

will expand to:

mov foo,Foo
mov FOO,Foo

The sequence:
%$idefine keyword $%7?

can be used to make a keyword "disappear”, for example in case a new instruction has been used as a label ir
older code. For example:

%$idefine pause $%°7? ; Hide the PAUSE instruction
4.1.6 Undefining Single-Line Macrossundef
Single-line macros can be removed with thende £ directive. For example, the following sequence:

$define foo bar
$undef foo
mov eax, foo
will expand to the instructionov eax, foo, since afteBundef the macrafoo is no longer defined.

Macros that would otherwise be pre—defined can be undefined on the command-line using the ‘~u’ option on
the NASM command line: see section 2.1.19.

4.1.7 Preprocessor Variablessassign

An alternative way to define single-line macros is by means of sthesign command (and its

case-insensitive counterpattiassign, which differs from $assign in exactly the same way that
%idefine differs fromsdefine).

%assign is used to define single-line macros which take no parameters and have a numeric value. This
value can be specified in the form of an expression, and it will be evaluated once, whets #ieyn
directive is processed.

Like $define, macros defined usifgassign can be re—defined later, so you can do things like
$assign i i+1
to increment the numeric value of a macro.

%assign is useful for controlling the termination a&frep preprocessor loops: see section 4.5 for an
example of this. Another use fBassign is given in section 8.4 and section 9.1.

The expression passed%assign is a critical expression (see section 3.8), and must also evaluate to a pure
number (rather than a relocatable reference such as a code or data address, or anything involving a register).

4.1.8 Defining Strings:%$defstr

$defstr, and its case-insensitive counterpatidefstr, define or redefine a single-line macro without
parameters but converts the entire right—hand side, after macro expansion, to a quoted string before definition.

For example:

$defstr test TEST

is equivalent to

$define test ’'TEST’

This can be used, for example, with theconstruct (see section 4.10.2):

$defstr PATH %$!PATH ; The operating system PATH variable

4.1.9 Defining Tokens%deftok

4.2

$deftok, and its case-insensitive counterpatideftok, define or redefine a single-line macro without
parameters but converts the second parameter, after string conversion, to a sequence of tokens.

For example:
$deftok test 'TEST’
is equivalent to

$define test TEST

String Manipulation in Macros

It's often useful to be able to handle strings in macros. NASM supports a few simple string handling macro
operators from which more complex operations can be constructed.

All the string operators define or redefine a value (either a string or a numeric value) to a single—line macro.
When producing a string value, it may change the style of quoting of the input string or strings, and possibly
use\—escapes inside-quoted strings.

4.2.1 Concatenating Strings$strcat

The$strcat operator concatenates quoted strings and assign them to a single-line macro.

For example:

45

$strcat alpha "Alpha: ", ’12" screen’
... would assign the valuea1pha: 12" screen’ toalpha. Similarly:
$strcat beta ’'"foo"\’, "'bar’"
... would assign the value" foo"\\’bar’ * tobeta.
The use of commas to separate strings is permitted but optional.
4.2.2 String Length:$strlen
The$strlen operator assigns the length of a string to a macro. For example:
$strlen charcnt 'my string’

In this examplecharcnt would receive the value 9, just as if aassign had been used. In this example,
'my string’ was a literal string but it could also have been a single-line macro that expands to a string, as
in the following example:

$define sometext 'my string’
$strlen charcnt sometext

As in the first case, this would resultdéharcnt being assigned the value of 9.
4.2.3 Extracting Substrings:$substr

Individual letters or substrings in strings can be extracted usirgsthiest r operator. An example of its use
is probably more useful than the description:

$substr mychar ’'xyzw’ 1 ; equivalent to %define mychar ’x’
$substr mychar ’'xyzw’ 2 ; equivalent to %define mychar 'y’
$substr mychar ’'xyzw’ 3 ; equivalent to %define mychar 'z’
$substr mychar ’'xyzw’ 2,2 ; equivalent to %define mychar ’'yz’
$substr mychar ’'xyzw’ 2,-1 ; equivalent to %$define mychar ’"yzw’
$substr mychar ’'xyzw’ 2,-2 ; equivalent to %define mychar ’'yz’

As with $strlen (see section 4.2.2), the first parameter is the single-line macro to be created and the
second is the string. The third parameter specifies the first character to be selected, and the optional fourth
parameter preceeded by comma) is the length. Note that the first index is 1, not 0 and the last index is equal to
the value thatstrlen would assign given the same string. Index values out of range result in an empty
string. A negative length means "until N-1 characters before the end of string"] ireeans until end of
string,-2 until one character before, etc.

4.3 Multi-Line Macros: $macro

Multi-line macros are much more like the type of macro seen in MASM and TASM: a multi-line macro
definition in NASM looks something like this.

$macro prologue 1

push ebp
mov ebp, esp
sub esp, %1

%$endmacro

This defines a C-like function prologue as a macro: so you would invoke the macro with a call such as
myfunc: prologue 12

which would expand to the three lines of code

myfunc: push ebp
mov ebp, esp
sub esp, 12

The number1 after the macro name in themacro line defines the number of parameters the macro
prologue expects to receive. The usexf inside the macro definition refers to the first parameter to the
macro call. With a macro taking more than one parameter, subsequent parameters would be refexrped to as
%3 and so on.

Multi-line macros, like single-line macros, are case—sensitive, unless you define them using the alternative
directive%imacro.

If you need to pass a commaymat of a parameter to a multi-line macro, you can do that by enclosing the
entire parameter in braces. So you could code things like

$macro silly 2

%$2: db %1
$endmacro
silly ’"a’, letter_a ; letter_a: db "a’
silly ’ab’, string_ab ; string_ab: db ’ab’
silly {13,10}, crlf ; crlf: db 13,10

4.3.1 Overloading Multi-Line Macros

As with single-line macros, multi-line macros can be overloaded by defining the same macro name several
times with different numbers of parameters. This time, no exception is made for macros with no parameters at
all. So you could define

$macro prologue 0

push ebp
mov ebp, esp
%$endmacro

to define an alternative form of the function prologue which allocates no local stack space.

Sometimes, however, you might want to ‘overload’ a machine instruction; for example, you might want to
define

$macro push 2

push %1
push %2
%$endmacro

47

so that you could code

push ebx ; this line is not a macro call
push eax, ecx ; but this one is

Ordinarily, NASM will give a warning for the first of the above two lines, sipaeh is now defined to be a
macro, and is being invoked with a number of parameters for which no definition has been given. The correct
code will still be generated, but the assembler will give a warning. This warning can be disabled by the use of
the—-w-macro-params command-line option (see section 2.1.24).

4.3.2 Macro—Local Labels

NASM allows you to define labels within a multi-line macro definition in such a way as to make them local
to the macro call: so calling the same macro multiple times will use a different label each time. You do this by
prefixing $% to the label name. So you can invent an instruction which execet®s d the z flag is set by

doing this:

$macro retz O

%$endmacro

You can call this macro as many times as you want, and every time you call it NASM will make up a different
‘real’ name to substitute for the labedskip. The names NASM invents are of the forme2345.skip,

where the number 2345 changes with every macro call..Tigeprefix prevents macro-local labels from
interfering with the local label mechanism, as described in section 3.9. You should avoid defining your own
labels in this form (the..@ prefix, then a number, then another period) in case they interfere with
macro-local labels.

4.3.3 Greedy Macro Parameters

Occasionally it is useful to define a macro which lumps its entire command line into one parameter definition,
possibly after extracting one or two smaller parameters from the front. An example might be a macro to write
a text string to a file in MS-DOS, where you might want to be able to write

writefile [filehandle], "hello, world",13,10

NASM allows you to define the last parameter of a macro fgréedy meaning that if you invoke the macro
with more parameters than it expects, all the spare parameters get lumped into the last defined one along with
the separating commas. So if you code:

$macro writefile 2+

Jjmp $%endstr
$%str: db %2
$%endstr:
mov dx, $%str
mov cx,%%endstr—-%%str
mov bx, %1
mov ah, 0x40

int 0x21

%$endmacro

then the example call taritefile above will work as expected: the text before the first comma,
[filehandle], is used as the first macro parameter and expanded whes referred to, and all the
subsequent text is lumped irk@ and placed after théb.

The greedy nature of the macro is indicated to NASM by the use ofsiym after the parameter count on the
$macro line.

If you define a greedy macro, you are effectively telling NASM how it should expand the macragywen
number of parameters from the actual number specified up to infinity; in this case, for example, NASM now
knows what to do when it sees a calktoitefile with 2, 3, 4 or more parameters. NASM will take this

into account when overloading macros, and will not allow you to define another farmiekfile taking

4 parameters (for example).

Of course, the above macro could have been implemented as a non—greedy macro, in which case the call to it
would have had to look like

writefile [filehandle], {"hello, world",13,10}

NASM provides both mechanisms for putting commas in macro parameters, and you choose which one you
prefer for each macro definition.

See section 6.3.1 for a better way to write the above macro.
4.3.4 Macro Parameters Range

NASM allows you to expand parameters via special construétion: y} wherex is the first parameter
index andy is the last. Any index can be either negative or positive but must never be zero.

For example
$macro mpar 1-%*
db %${3:5}
%$endmacro
mpar 1,2,3,4,5,6
expands t®, 4, 5 range.
Even more, the parameters can be reversed so that
$macro mpar 1-%*
db %${5:3}
%$endmacro
mpar 1,2,3,4,5,6
expands t®, 4, 3 range.

But even this is not the last. The parameters can be addressed via negative indices so NASM will count them
reversed. The ones who know Python may see the analogue here.

$macro mpar 1-%*
db ${-1:-3}
$endmacro

49

50

mpar 1,2,3,4,5,6
expands ta, 5, 4 range.
Note that NASM uses comma to separate parameters being expanded.

By the way, here is a trick — you might use the indé¢x1 : -1} which gives you the last argument passed to
a macro.

4.3.5 Default Macro Parameters

NASM also allows you to define a multi-line macro witlamge of allowable parameter counts. If you do
this, you can specify defaults for omitted parameters. So, for example:

$macro die 0-1 "Painful program death has occurred."

writefile 2,%1

mov ax, 0x4c01
int 0x21
%$endmacro

This macro (which makes use of theitefile macro defined in section 4.3.3) can be called with an
explicit error message, which it will display on the error output stream before exiting, or it can be called with
no parameters, in which case it will use the default error message supplied in the macro definition.

In general, you supply a minimum and maximum number of parameters for a macro of this type; the
minimum number of parameters are then required in the macro call, and then you provide defaults for the
optional ones. So if a macro definition began with the line

$macro foobar 1-3 eax, [ebx+2]

then it could be called with between one and three parameters;amduld always be taken from the macro
call. 2, if not specified by the macro call, would defaultetex, and%3 if not specified would default to
[ebx+2].

You can provide extra information to a macro by providing too many default parameters:
$macro quux 1 something

This will trigger a warning by default; see section 2.1.24 for more information. \Wher is invoked, it
receives not one but two parametersmething can be referred to a&2. The difference between passing
something this way and writingsomething in the macro body is that with this waymething is
evaluated when the macro is defined, not when it is expanded.

You may omit parameter defaults from the macro definition, in which case the parameter default is taken to be
blank. This can be useful for macros which can take a variable number of parameters, sindekba (see
section 4.3.6) allows you to determine how many parameters were really passed to the macro call.

This defaulting mechanism can be combined with the greedy—parameter mechanisnaisofecro above
could be made more powerful, and more useful, by changing the first line of the definition to

$macro die 0-1+ "Painful program death has occurred.",13,10

The maximum parameter count can be infinite, denoted.bi this case, of course, it is impossible to
provide afull set of default parameters. Examples of this usage are shown in section 4.3.8.

4.3.6 $0: Macro Parameter Counter

The parameter referené® will return a numeric constant giving the number of parameters received, that is,
if 50 is n thensn is the last parametet0 is mostly useful for macros that can take a variable number of
parameters. It can be used as an argumentrtep (see section 4.5) in order to iterate through all the
parameters of a macro. Examples are given in section 4.3.8.

4.3.7 $00: Label Preceeding Macro

%00 will return the label preceeding the macro invocation, if any. The label must be on the same line as the
macro invocation, may be a local label (see section 3.9), and need not end in a colon.

4.3.8 srotate: Rotating Macro Parameters

Unix shell programmers will be familiar with thehi £t shell command, which allows the arguments passed
to a shell script (referenced &g, $2 and so on) to be moved left by one place, so that the argument
previously referenced as2 becomes available &gl, and the argument previously referenceds asis no
longer available at all.

NASM provides a similar mechanism, in the formafotate. As its name suggests, it differs from the
Unix shift in that no parameters are lost: parameters rotated off the left end of the argument list reappear on
the right, and vice versa.

$rotate is invoked with a single numeric argument (which may be an expression). The macro parameters
are rotated to the left by that many places. If the argumentdé@ ate is negative, the macro parameters are
rotated to the right.

So a pair of macros to save and restore a set of registers might work as follows:
$macro multipush 1-%*
$rep %0
push

$rotate 1
$endrep

o\
=

%$endmacro

This macro invokes theuUsH instruction on each of its arguments in turn, from left to right. It begins by
pushing its first argumeng1, then invokesrotate to move all the arguments one place to the left, so that
the original second argument is now availables asRepeating this procedure as many times as there were
arguments (achieved by supplyiag as the argument torep) causes each argument in turn to be pushed.

Note also the use of as the maximum parameter count, indicating that there is no upper limit on the number
of parameters you may supply to thelt ipush macro.

It would be convenient, when using this macro, to havem equivalent, whichdidn’t require the arguments

to be given in reverse order. Ideally, you would write i@ t ipush macro call, then cut-and-paste the

line to where the pop needed to be done, and change the name of the called madnoiigop, and the

macro would take care of popping the registers in the opposite order from the one in which they were pushed.

This can be done by the following definition:

$macro multipop 1-%*

51

52

$rep %0

%$rotate -1
pop

$endrep

o
=

%$endmacro

This macro begins by rotating its arguments one place toghe so that the origindhst argument appears
as 1. This is then popped, and the arguments are rotated right again, so the second-to-last argument
becomes 1. Thus the arguments are iterated through in reverse order.

4.3.9 Concatenating Macro Parameters

NASM can concatenate macro parameters and macro indirection constructs on to other text surrounding them.
This allows you to declare a family of symbols, for example, in a macro definition. If, for example, you
wanted to generate a table of key codes along with offsets into the table, you could code something like

$macro keytab_entry 2

keypos%1l equ S-keytab
db %2
%$endmacro
keytab:

keytab_entry F1,128+1
keytab_entry F2,128+2
keytab_entry Return,13

which would expand to

keytab:

keyposF1 equ S-keytab
db 128+1

keyposF2 equ S-keytab
db 128+2

keyposReturn equ S-keytab
db 13

You can just as easily concatenate text on to the other end of a macro parameter, by wfiding

If you need to appenddigit to a macro parameter, for example defining laiels1 andfoo2 when passed

the parameterfoo, you can't codex11 because that would be taken as the eleventh macro parameter.
Instead, you must code{1}1, which will separate the first (giving the number of the macro parameter)
from the second (literal text to be concatenated to the parameter).

This concatenation can also be applied to other preprocessor in—line objects, such as macro-local labels
(section 4.3.2) and context—local labels (section 4.7.2). In all cases, ambiguities in syntax can be resolved by
enclosing everything after the sign and before the literal text in braces:39@& foo}bar concatenates the

text bar to the end of the real name of the macro-local lakteloo. (This is unnecessary, since the form
NASM uses for the real names of macro-local labels means that the two us@Egeso}bar and

%% foobar would both expand to the same thing anyway; nevertheless, the capability is there.)

The single-line macro indirection construét{...] (section 4.1.3), behaves the same way as macro
parameters for the purpose of concatenation.

See also the+ operator, section 4.1.4.

4.3.10 Condition Codes as Macro Parameters

NASM can give special treatment to a macro parameter which contains a condition code. For a start, you can
refer to the macro parametenr by means of the alternative syntax1, which informs NASM that this

macro parameter is supposed to contain a condition code, and will cause the preprocessor to report an error
message if the macro is called with a parameter whichtia valid condition code.

Far more usefully, though, you can refer to the macro parameter by meass, efhich NASM will expand
as theinverse condition code. So theetz macro defined in section 4.3.2 can be replaced by a general
conditional-return macro like this:

$macro retc 1

$%skip:

%$endmacro

This macro can now be invoked using calls ik c ne, which will cause the conditional-jump instruction
in the macro expansion to come outi@s or retc po which will make the jump apk.

The $+1 macro—parameter reference is quite happy to interpret the argunentaind ECXz as valid
condition codes; howeveg-1 will report an error if passed either of these, because no inverse condition
code exists.

4.3.11 Disabling Listing Expansion

When NASM is generating a listing file from your program, it will generally expand multi-line macros by
means of writing the macro call and then listing each line of the expansion. This allows you to see which
instructions in the macro expansion are generating what code; however, for some macros this clutters the
listing up unnecessarily.

NASM therefore provides thenolist qualifier, which you can include in a macro definition to inhibit the
expansion of the macro in the listing file. Theolist qualifier comes directly after the number of
parameters, like this:

$macro foo l.nolist
Or like this:

$macro bar 1-5+.nolist a,b,c,d,e,f,g,h

4.3.12 Undefining Multi-Line Macros: $unmacro

Multi-line macros can be removed with thRenmacro directive. Unlike thexsundef directive, however,
sunmacro takes an argument specification, and will only remove exact matches with that argument
specification.

For example:

53

54

4.4

$macro foo 1-3

; Do something
%$endmacro
$unmacro foo 1-3

removes the previously defined madteo, but

$macro bar 1-3

; Do something
%$endmacro
$unmacro bar 1

doesnotremove the macrpbar, since the argument specification does not match exactly.

Conditional Assembly

Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if certain
conditions are met. The general syntax of this feature looks like this:

%$if<condition>

; some code which only appears if <condition> is met
%$elif<condition2>

; only appears if <condition> is not met but <condition2> is
%else

; this appears if neither <condition> nor <condition2> was met
%$endif

The inverse formsifn and%elifn are also supported.
The%else clause is optional, as is the1i f clause. You can have more than érd i £ clause as well.

There are a number of variants of thief directive. Each has its correspondi&glif, $ifn, andselifn
directives; for example, the equivalents to theéfdef directive are ¥elifdef, %ifndef, and
$elifndef.

4.4.1 sifdef: Testing Single-Line Macro Existence

Beginning a conditional-assembly block with the linefdef MACRO will assemble the subsequent code if,
and only if, a single—line macro callethCrO is defined. If not, then theelif and%else blocks (if any)
will be processed instead.

For example, when debugging a program, you might want to write code such as

; perform some function
%$ifdef DEBUG

writefile 2,"Function performed successfully",13,10
$endif

; go and do something else

Then you could use the command-line opt@DEBUG to create a version of the program which produced
debugging messages, and remove the option to generate the final release version of the program.

You can test for a macnoot being defined by usingifndef instead ofsifdef. You can also test for
macro definitions irkelif blocks by usinggelifdef and%elifndef.

4.4.2 sifmacro: Testing Multi-Line Macro Existence

The $ifmacro directive operates in the same way as%h&def directive, except that it checks for the
existence of a multi-line macro.

For example, you may be working with a large project and not have control over the macros in a library. You
may want to create a macro with one name if it doesn't already exist, and another name if one with that name
does exist.

The $ifmacro is considered true if defining a macro with the given name and number of arguments would
cause a definitions conflict. For example:

$ifmacro MyMacro 1-3
$error "MyMacro 1-3" causes a conflict with an existing macro.
%else
$macro MyMacro 1-3
; insert code to define the macro
%$endmacro

%$endif

This will create the macro "MyMacro 1-3" if no macro already exists which would conflict with it, and emits
a warning if there would be a definition conflict.

You can test for the macro not existing by usingth@énmacro instead o i fmacro. Additional tests can
be performed irelif blocks by usingelifmacro and%elifnmacro.

4.4.3 sifctx: Testing the Context Stack

The conditional-assembly construct £ctx will cause the subsequent code to be assembled if and only if
the top context on the preprocessor’'s context stack has the same name as one of the arguments. As with
%1ifdef, the inverse antélelif forms$ifnctx, $elifctx andselifnctx are also supported.

For more details of the context stack, see section 4.7. For a samplesuse-ok, see section 4.7.6.

4.4.4 sif: Testing Arbitrary Numeric Expressions

The conditional-assembly constructf expr will cause the subsequent code to be assembled if and only if
the value of the numeric expressierpr is hon-zero. An example of the use of this feature is in deciding
when to break out of arep preprocessor loop: see section 4.5 for a detailed example.

The expression given toi £, and its counterpakte 11 £, is a critical expression (see section 3.8).

%1if extends the normal NASM expression syntax, by providing a set of relational operators which are not
normally available in expressions. The operatgrs, >, <=, >= and<> test equality, less—than, greater-than,
less—or—equal, greater—or—-equal and not-equal respectively. The C-likeferiausd ! = are supported as
alternative forms of= and <>. In addition, low-priority logical operatorss, ~~ and | | are provided,
supplying logical AND, logical XOR and logical OR. These work like the C logical operators (although C has
no logical XOR), in that they always return either 0 or 1, and treat any non-zero input as 1 {9q tbat

55

example, returns 1 if exactly one of its inputs is zero, and 0 otherwise). The relational operators also return 1
for true and O for false.

Like othersi £ constructsgif has a counterpatte1i f, and negative formsifn andselifn.

4.45 %ifidn and $ifidni: Testing Exact Text Identity

The constructyifidn textl, text2 will cause the subsequent code to be assembled if and only if
textl andtext2, after expanding single—line macros, are identical pieces of text. Differences in white
space are not counted.

%ifidni is similar to$ifidn, but is case—insensitive.

For example, the following macro pushes a register or number on the stack, and allows your to aseat
real register:

$macro pushparam 1

%$ifidni %1,1ip

call $%label
$%label
%$else
push %1
$endif
%$endmacro

Like other $if constructs,sifidn has a counterpartelifidn, and negative formsifnidn and
%elifnidn. Similarly,%ifidni has counterpartselifidni, $ifnidni and%elifnidni.

4.4.6 $ifid, $ifnum, $ifstr: Testing Token Types

Some macros will want to perform different tasks depending on whether they are passed a number, a string, or
an identifier. For example, a string output macro might want to be able to cope with being passed either a
string constant or a pointer to an existing string.

The conditional assembly construgt £id, taking one parameter (which may be blank), assembles the
subsequent code if and only if the first token in the parameter exists and is an identifietm works
similarly, but tests for the token being a numeric constant;st r tests for it being a string.

For example, theritefile macro defined in section 4.3.3 can be extended to take advantagé«ifr
in the following fashion:

$macro writefile 2-3+

$ifstr %2

Jjmp $%endstr
%$if %0 = 3
$%str: db %$2,%3
$else
$%str: db %2
$endif
$%endstr: mov dx, $%str

mov cx, %%endstr—-%%str

%$else

mov dx, %2
mov cx,%3
$endif
mov bx, %1
mov ah, 0x40
int 0x21
$endmacro

Then thewritefile macro can cope with being called in either of the following two ways:

writefile [file], strpointer, length
writefile [file], "hello", 13, 10

In the first,strpointer is used as the address of an already—declared string,eargth is used as its
length; in the second, a string is given to the macro, which therefore declares it itself and works out the

address and length for itself.

Note the use ofif inside thexifstr: this is to detect whether the macro was passed two arguments (so the
string would be a single string constant, atd %2 would be adequate) or more (in which case, all but the
first two would be lumped together int®, anddb %2, $3 would be required).

The usuakelif...,%ifn..., andselifn... versions exist for each 8fifid, $ifnumandsifstr.

4.4.7 siftoken: Test for a Single Token

Some macros will want to do different things depending on if it is passed a single token (e.g. paste it to
something else using+) versus a multi-token sequence.

The conditional assembly construci ftoken assembles the subsequent code if and only if the expanded
parameters consist of exactly one token, possibly surrounded by whitespace.

For example:

$iftoken 1

will assemble the subsequent code, but

$iftoken -1

will not, since-1 contains two tokens: the unary minus operatand the numbet.

The usuakeliftoken, $ifntoken, andselifntoken variants are also provided.

4.4.8 sifempty: Test for Empty Expansion

The conditional assembly construct fempty assembles the subsequent code if and only if the expanded
parameters do not contain any tokens at all, whitespace excepted.

The usuakelifempty, $ifnempty, andselifnempty variants are also provided.

4.4.9 sifenv: Test If Environment Variable Exists

The conditional assembly construct fenv assembles the subsequent code if and only if the environment
variable referenced by the! <env> directive exists.

The usuakelifenv, $ifnenv, andselifnenv variants are also provided.

57

58

4.5

Just as fors ! <env> the argument should be written as a string if it contains characters that would not be
legal in an identifier. See section 4.10.2.

Preprocessor Loopssrep

NASM'’s TIMES prefix, though useful, cannot be used to invoke a multi-line macro multiple times, because
it is processed by NASM after macros have already been expanded. Therefore NASM provides another form
of loop, this time at the preprocessor levatep.

The directivessrep andsendrep ($rep takes a numeric argument, which can be an expressiorjrep
takes no arguments) can be used to enclose a chunk of code, which is then replicated as many times as
specified by the preprocessor:

%$assign i 0
$rep 64
inc word [table+2*i]
$assign i i+1
$endrep

This will generate a sequence of B4C instructions, incrementing every word of memory frofreble] to
[table+126].

For more complex termination conditions, or to break out of a repeat loop part way along, you can use the
$exitrep directive to terminate the loop, like this:

fibonacci:
%$assign i O
%$assign j 1
$rep 100
$if j > 65535

$exitrep
%$endif

dw j

$assign k J+i
$assign i j
%$assign j k
$endrep

fib_number equ ($-fibonacci) /2

This produces a list of all the Fibonacci numbers that will fit in 16 bits. Note that a maximum repeat count
must still be given t&rep. This is to prevent the possibility of NASM getting into an infinite loop in the
preprocessor, which (on multitasking or multi—user systems) would typically cause all the system memory to
be gradually used up and other applications to start crashing.

Note a maximum repeat count is limited by 62 bit number, though it is hardly possible that you ever need
anything bigger.

4.6 Source Files and Dependencies

These commands allow you to split your sources into multiple files.

4.6.1 $include: Including Other Files

Using, once again, a very similar syntax to the C preprocessor, NASM's preprocessor lets you include other
source files into your code. This is done by the use of ihe-1ude directive:

$include "macros.mac"
will include the contents of the fileacros .mac into the source file containing the.nclude directive.

Include files are searched for in the current directory (the directory you're in when you run NASM, as
opposed to the location of the NASM executable or the location of the source file), plus any directories
specified on the NASM command line using thieoption.

The standard C idiom for preventing a file being included more than once is just as applicable in NASM: if
the filemacros .mac has the form

$ifndef MACROS_MAC

%$define MACROS_MAC

; now define some macros
$endif

then including the file more than once will not cause errors, because the second time the file is included
nothing will happen because the marmrcROS_MAC will already be defined.

You can force a file to be included even if there isnaclude directive that explicitly includes it, by using
the —p option on the NASM command line (see section 2.1.17).

4.6.2 spathsearch: Search the Include Path

The $pathsearch directive takes a single-line macro name and a filename, and declare or redefines the
specified single-line macro to be the include—path-resolved version of the filename, if the file exists
(otherwise, it is passed unchanged.)

For example,

$pathsearch MyFoo "foo.bin"

... Wwith—Ibins/ in the include path may end up defining the masfsoo to be"bins/foo.bin".
4.6.3 sdepend: Add Dependent Files

The $depend directive takes a filename and adds it to the list of files to be emitted as dependency generation
when the-M options and its relatives (see section 2.1.4) are used. It produces no output.

This is generally used in conjunction withathsearch. For example, a simplified version of the standard
macro wrapper for theNCBIN directive looks like:

$imacro incbin 1-2+ 0
$pathsearch dep %1
$depend dep

incbin dep, %2
$endmacro

This first resolves the location of the file into the madep, then adds it to the dependency lists, and finally
issues the assembler—leeiCBIN directive.

59

60

4.6.4 suse: Include Standard Macro Package

4.7

The suse directive is similar to¥include, but rather than including the contents of a file, it includes a
named standard macro package. The standard macro packages are part of NASM, and are described in chapte
5.

Unlike thesinclude directive, package names for these directive do not require quotes, but quotes are
permitted. In NASM 2.04 and 2.05 the unquoted form would be macro—expanded; this is no longer true. Thus,
the following lines are equivalent:

$use altreg
$use ’'altreg’

Standard macro packages are protected from multiple inclusion. When a standard macro package is used, a
testable single—line macro of the formUSE_package__is also defined, see section 4.12.8.

The Context Stack

Having labels that are local to a macro definition is sometimes not quite powerful enough: sometimes you
want to be able to share labels between several macro calls. An example migihtH®aa ... UNTIL loop,

in which the expansion of thREPEAT macro would need to be able to refer to a label whichuter L

macro had defined. However, for such a macro you would also want to be able to nest these loops.

NASM provides this level of power by means oftantext stack The preprocessor maintains a stack of
contexts each of which is characterized by a name. You add a new context to the stack usingshe
directive, and remove one usiagop. You can define labels that are local to a particular context on the stack.

4.7.1 spush and $pop: Creating and Removing Contexts

The $push directive is used to create a new context and place it on the top of the contexstack takes
an optional argument, which is the name of the context. For example:

$push foobar

This pushes a new context calledobar on the stack. You can have several contexts on the stack with the
same name: they can still be distinguished. If no name is given, the context is unnamed (this is normally used
when both thepush and thespop are inside a single macro definition.)

The directivespop, taking one optional argument, removes the top context from the context stack and
destroys it, along with any labels associated with it. If an argument is given, it must match the name of the
current context, otherwise it will issue an error.

4.7.2 Context—Local Labels

Just as the usagex foo defines a label which is local to the particular macro call in which it is used, the
usagesS$foo is used to define a label which is local to the context on the top of the context stack. So the
REPEAT andUNTIL example given above could be implemented by means of:

$macro repeat 0

$push repeat
%$$begin:

%$endmacro

$macro until 1

j%-1 Sbegin
Spop

%$endmacro

and invoked by means of, for example,

mov cx, string
repeat

add cx,3
scasb

until e

which would scan every fourth byte of a string in search of the byg.in

If you need to define, or access, labels local to the cobilrivthe top one on the stack, you can use
$$$foo, Orsssfoo for the context below that, and so on.

4.7.3 Context-Local Single-Line Macros

NASM also allows you to define single-line macros which are local to a particular context, in just the same
way:

$define %$localmac 3

will define the single-line macre$localmac to be local to the top context on the stack. Of course, after a
subsequentpush, it can then still be accessed by the namélocalmac.

4.7.4 Context Fall-Through Lookup

Context fall-through lookup (automatic searching of outer contexts) is a feature that was added in NASM
version 0.98.03. Unfortunately, this feature is unintuitive and can result in buggy code that would have
otherwise been prevented by NASM'’s error reporting. As a result, this feature hadepeerated NASM

version 2.09 will issue a warning when usage of tiaprecatedfeature is detected. Starting with NASM
version 2.10, usage of thieprecatedeature will simply result in aexpression syntax error

An example usage of thieprecatedeature follows:

$macro ctxthru O
$push ctxl
%$assign %$S$Sexternal 1
$push ctx2
%$assign %$S$internal 1
mov eax, %$Sexternal
mov eax, %$Sinternal
$pop
Spop
$endmacro
As demonstratedsSexternal is being defined in thetxl context and referenced within thecx2
context. With context fall-through lookup, referencing an undefined context—local macro like this implicitly
searches through all outer contexts until a match is made or isn't found in any context. As a result,
$Sexternal referenced within thetx2 context would implicitly us&Sexternal as defined irctx1.

61

62

Most people would expect NASM to issue an error in this situation beedusecernal was never defined
within ctx2 and also isn’t qualified with the proper context depthsexternal.

Here is a revision of the above example with proper context depth:

$macro ctxthru O
$push ctxl
%$assign %$S$Sexternal 1
$push ctx2
%$assign %$S$internal 1
mov eax, %SS$Sexternal
mov eax, %SSinternal

spop
spop
%$endmacro

As demonstrateds Sexternal is still being defined in thetx1 context and referenced within the x2
context. However, the reference t¢external within ctx2 has been fully qualified with the proper
context depth$$$external, and thus is no longer ambiguous, unintuitive or erroneous.

4.7.5 srepl: Renaming a Context

If you need to change the name of the top context on the stack (in order, for example, to have it respond
differently to $ifctx), you can execute spop followed by aspush; but this will have the side effect of
destroying all context—local labels and macros associated with the context that was just popped.

NASM provides the directivérepl, whichreplacesa context with a different name, without touching the
associated macros and labels. So you could replace the destructive code

Spop
$push newname

with the non—destructive versidtrepl newname.
4.7.6 Example Use of the Context Stack: Block IFs

This example makes use of almost all the context-stack features, including the conditional-assembly
constructyi fctx, to implement a block IF statement as a set of macros.

$macro if 1

$push if
j%$-1 %Sifnot

%$endmacro
$macro else 0

$ifctx if

$repl else
Jmp $$ifend
Sifnot:
%else
$error "expected ‘if’ before ‘else’"

%$endif

%$endmacro

$macro endif O

$ifctx if

$$ifnot:
$pop
$elifctx else
$$ifend:
$pop
$else
$error "expected ‘if’ or ‘else’ before ‘endif’"
$endif
$endmacro

This code is more robust than tR&PEAT and UNTIL macros given in section 4.7.2, because it uses
conditional assembly to check that the macros are issued in the right order (for example, notwcallifg
beforei£) and issues aerror if they're not.

In addition, theendi £ macro has to be able to cope with the two distinct cases of either directly following an
if, or following anelse. It achieves this, again, by using conditional assembly to do different things
depending on whether the context on top of the statk mrelse.

Theelse macro has to preserve the context on the stack, in order to haagithaot referred to by the £
macro be the same as the one defined byeth#i f macro, but has to change the context's name so that
endi f will know there was an intervenirgl se. It does this by the use 8fepl.

A sample usage of these macros might look like:

cmp ax,bx
if ae
cmp bx, cx
if ae
mov ax, cx
else
mov ax, bx
endif
else
cmp ax, cx
if ae
mov ax, cx
endif
endif

63

64

The block-IF macros handle nesting quite happily, by means of pushing another context, describing the inner
if, on top of the one describing the outer, thuselse andendif always refer to the last unmatched
Orelse.

4.8 Stack Relative Preprocessor Directives

The following preprocessor directives provide a way to use labels to refer to local variables allocated on the
stack.

* %arg (see section 4.8.1)
e %stacksize (Ssee section 4.8.2)

* %local (see section 4.8.3)

4.8.1 sarg Directive

The $arg directive is used to simplify the handling of parameters passed on the stack. Stack based parameter
passing is used by many high level languages, including C, C++ and Pascal.

While NASM has macros which attempt to duplicate this functionality (see section 8.4.5), the syntax is not
particularly convenient to use and is not TASM compatible. Here is an example which shows theaise of
without any external macros:

some_function:

$push mycontext ; save the current context
$stacksize large ; tell NASM to use bp
$arg i:word, Jj_ptr:word
mov ax, [1i]
mov bx, [j_ptr]
add ax, [bx]
ret
$pop ; restore original context

This is similar to the procedure defined in section 8.4.5 and adds the value in i to the value pointed to by |_ptr
and returns the sum in the ax register. See section 4.7.1 for an explanatiosthoindpop and the use of
context stacks.

4.8.2 sstacksize Directive

The $stacksize directive is used in conjunction with tharg (see section 4.8.1) and th@ocal (see
section 4.8.3) directives. It tells NASM the default size to use for subsetmegtand$local directives.
The$stacksize directive takes one required argument which is onglafc, f1at 64, large Orsmall.

$stacksize flat

This form causes NASM to use stack-based parameter addressing relatiye dad it assumes that a near
form of call was used to get to this label (i.e. #aap is on the stack).

$stacksize flaté64

This form causes NASM to use stack-based parameter addressing relatiye dod it assumes that a near
form of call was used to get to this label (i.e. thap is on the stack).

4.8.3

4.9

$stacksize large

This form use%p to do stack-based parameter addressing and assumes that a far form of call was used to get
to this address (i.e. thap andcs are on the stack).

$stacksize small

This form also usebp to address stack parameters, but it is different ftamge because it also assumes

that the old value of bp is pushed onto the stack (i.e. it expedsIBRR instruction). In other words, it
expects thabp, ip andcs are on the top of the stack, underneath any local space which may have been
allocated byeNTER. This form is probably most useful when used in combination witls thecal directive

(see section 4.8.3).

%local Directive

The $1ocal directive is used to simplify the use of local temporary stack variables allocated in a stack
frame. Automatic local variables in C are an example of this kind of variablex Tdvea 1 directive is most

useful when used with thestacksize (see section 4.8.2 and is also compatible withztheg directive

(see section 4.8.1). It allows simplified reference to variables on the stack which have been allocated typically
by using theeNTER instruction. An example of its use is the following:

silly_swap:
$push mycontext ; save the current context
$stacksize small ; tell NASM to use bp
%$assign %$$localsize O ; see text for explanation

%$local old_ax:word, old dx:word

enter %Slocalsize, O ; see text for explanation
mov [old_ax],ax ; swap ax & bx
mov [old_dx],dx ; and swap dx & cx
mov ax, bx
mov dx, cx
mov bx, [old_ax]
mov cx, [old_dx]
leave ; restore old bp
ret ;
$pop ; restore original context

The $S1localsize variable is used internally by thelocal directive andmustbe defined within the
current context before thelocal directive may be used. Failure to do so will result in one expression
syntax error for eackhlocal variable declared. It then may be used in the construction of an appropriately
sized ENTER instruction as shown in the example.

Reporting User-Defined Errors:$error, $warning, $fatal

The preprocessor directivieerror will cause NASM to report an error if it occurs in assembled code. So if
other users are going to try to assemble your source files, you can ensure that they define the right macros by
means of code like this:

$ifdef F1
; do some setup

65

$elifdef F2

; do some different setup
$else

$error "Neither F1 nor F2 was defined."
$endif

Then any user who fails to understand the way your code is supposed to be assembled will be quickly warned
of their mistake, rather than having to wait until the program crashes on being run and then not knowing what
went wrong.

Similarly, $warning issues a warning, but allows assembly to continue:

$ifdef F1
; do some setup
%$elifdef F2
; do some different setup
%else
$warning "Neither F1 nor F2 was defined, assuming F1."
%define F1
%$endif

$error and $warning are issued only on the final assembly pass. This makes them safe to use in
conjunction with tests that depend on symbol values.

$fatal terminates assembly immediately, regardless of pass. This is useful when there is no point in
continuing the assembly further, and doing so is likely just going to cause a spew of confusing error messages.

It is optional for the message string aftefrror, $warning or $fatal to be quoted. If it is1ot, then
single-line macros are expanded in it, which can be used to display more information to the user. For
example:

$if foo > 64

%$assign foo_over foo-64

$error foo is foo_over bytes too large
$endif

4.10 Other Preprocessor Directives

NASM also has preprocessor directives which allow access to information from external sources. Currently
they include:

* 3%line enables NASM to correctly handle the output of another preprocessor (see section 4.10.1).
* %! enables NASM to read in the value of an environment variable, which can then be used in your
program (see section 4.10.2).
4.10.1 $1ine Directive

The $1ine directive is used to notify NASM that the input line corresponds to a specific line number in
another file. Typically this other file would be an original source file, with the current NASM input being the
output of a pre—processor. Thd ine directive allows NASM to output messages which indicate the line
number of the original source file, instead of the file that is being read by NASM.

This preprocessor directive is not generally of use to programmers, by may be of interest to preprocessor
authors. The usage of th@ ine preprocessor directive is as follows:

%$line nnn[+mmm] [filename]

In this directive,nnn identifies the line of the original source file which this line correspondsnta.is an
optional parameter which specifies a line increment value; each line of the input file read in is considered to
correspond tanmm lines of the original source file. Finallyfilename is an optional parameter which
specifies the file name of the original source file.

After reading a31ine preprocessor directive, NASM will report all file name and line numbers relative to
the values specified therein.

4.10.2 $'<env>: Read an environment variable.

The %! <env> directive makes it possible to read the value of an environment variable at assembly time. This
could, for example, be used to store the contents of an environment variable into a string, which could be used
at some other point in your code.

For example, suppose that you have an environment varalleand you want the contents B60 to be
embedded in your program. You could do that as follows:

$defstr FOO % 1FOO
See section 4.1.8 for notes on thie f st r directive.

If the name of the environment variable contains non-identifier characters, you can use string quotes to
surround the name of the variable, for example:

$defstr C_colon s1rc:’

4.11 Comment BlocksS%comment

The $comment and%endcomment directives are used to specify a block of commented (i.e. unprocessed)
code/text. Everything betweertomment andsendcomment will be ignored by the preprocessor.

$comment
; some code, text or data to be ignored
$endcomment

4.12 Standard Macros

NASM defines a set of standard macros, which are already defined when it starts to process any source file. If
you really need a program to be assembled with no pre—defined macros, you carsuse=the directive to
empty the preprocessor of everything but context-local preprocessor variables and single-line macros.

Most user—level assembler directives (see chapter 6) are implemented as macros which invoke primitive
directives; these are described in chapter 6. The rest of the standard macro set is described here.

4.12.1 NASM Version Macros

The single-line macros__NASM_MAJOR__, __ NASM_MINOR__, _ NASM SUBMINOR__ and
____NASM_PATCHLEVEL___ expand to the major, minor, subminor and patch level parts of the version
number of NASM being used. So, under NASM 0.98.32p1 for examplsasSM_MAJOR___ would be
defined to be 0, NASM_MINOR__ would be defined as 98, NASM_SUBMINOR___ would be defined to

32,and___ NASM_PATCHLEVEL__ would be defined as 1.

Additionally, the macro__NASM_SNAPSHOT___ is defined for automatically generated snapshot releases
only.

67

4.12.2 __NASM_VERSION_ID__: NASM Version ID

The single-line macro_NASM_VERSION_ID___ expands to a dword integer representing the full version
number of the version of nasm being used. The value is the equivalent NBSM_MAJOR__,
__NASM_MINOR__, _ NASM_SUBMINOR___ and___ NASM_PATCHLEVEL___ concatenated to produce a
single doubleword. Hence, for 0.98.32p1, the returned number would be equivalent to:

dd 0x00622001
or
db 1,32,98,0

Note that the above lines are generate exactly the same code, the second line is used just to give an indicatior
of the order that the separate values will be present in memory.

4.12.3 __NASM_VER___: NASM Version string

The single—line macro_NASM_VER___ expands to a string which defines the version number of nasm being
used. So, under NASM 0.98.32 for example,

db __NASM_VER__
would expand to

db "0.98.32"

4.12.4 __FILE__ and__LINE__: File Name and Line Number

Like the C preprocessor, NASM allows the user to find out the file name and line number containing the
current instruction. The macro FILE___ expands to a string constant giving the name of the current input
file (which may change through the course of assembiy ifc1ude directives are used), and LINE___
expands to a numeric constant giving the current line number in the input file.

These macros could be used, for example, to communicate debugging information to a macro, since invoking
__LINE__ inside a macro definition (either single-line or multi-line) will return the line number of the
macrocall, rather thardefinition So to determine where in a piece of code a crash is occurring, for example,
one could write a routinetillhere, which is passed a line numbergax and outputs something like

‘line 155: still here’. You could then write a macro

$macro notdeadyet 0

push eax

mov eax,_ LINE_

call stillhere

pop eax
%$endmacro

and then pepper your code with callsitst deadyet until you find the crash point.

4.12.5__BITS__: Current BITS Mode

The __BITS___ standard macro is updated every time that the BITS mode is set usiBghe xx or

[BITS xX] directive, where XX is a valid mode number of 16, 32 or 6881TS___ receives the specified

mode number and makes it globally available. This can be very useful for those who utilize mode—-dependent
macros.

68

4.12.6 __OUTPUT_FORMAT___: Current Output Format

The__oUTPUT_FORMAT___ standard macro holds the current Output Format, as given byttogtion or
NASM'’s default. Typenasm -hf for a list.

$ifidn _ OUTPUT_FORMAT_ , win32
$define NEWLINE 13, 10

%$elifidn _ OUTPUT_FORMAT__, elf32
$define NEWLINE 10

$endif

4.12.7 Assembly Date and Time Macros
NASM provides a variety of macros that represent the timestamp of the assembly session.

e The__DATE__ and__TIME__ macros give the assembly date and time as strings, in ISO 8601 format
("YYYY-MM-DD" and"HH:MM:SS", respectively.)

e The__DATE_NUM__ and__TIME_NUM__ macros give the assembly date and time in numeric form; in
the formatyYyYMMDD andHHMMSS respectively.

e The __UTC_DATE__ and__UTC_TIME___ macros give the assembly date and time in universal time
(UTC) as strings, in ISO 8601 format{yYy-MM-DD" and "HH:MM:SS", respectively.) If the host
platform doesn’t provide UTC time, these macros are undefined.

e The __UTC_DATE_NUM__ and __ _UTC_TIME_NUM__ macros give the assembly date and time
universal time (UTC) in numeric form; in the formaryymMMDD and HHMMSS respectively. If the host
platform doesn't provide UTC time, these macros are undefined.

e The__POSIX_TIME___ macro is defined as a number containing the number of seconds since the POSIX
epoch, 1 January 1970 00:00:00 UTC; excluding any leap seconds. This is computed using UTC time if
available on the host platform, otherwise it is computed using the local time as if it was UTC.

All instances of time and date macros in the same assembly session produce consistent output. For example,
in an assembly session started at 42 seconds after midnight on January 1, 2010 in Moscow (timezone UTC+3)
these macros would have the following values, assuming, of course, a properly configured environment with a
correct clock:

__ DATE___ "2010-01-01"
_ _TIME___ "00:00:42"
_ DATE_NUM___ 20100101

_ TIME_NUM___ 000042

_ _UTC_DATE___ "2009-12-31"
__UTC_TIME_ "21:00:42"
__ UTC_DATE_NUM___ 20091231

__ UTC_TIME_NUM___ 210042

_ _POSIX_TIME_ 1262293242

4.12.8 __Uske_package__: Package Include Test

When a standard macro package (see chapter 5) is included withiékedirective (see section 4.6.4), a
single-line macro of the form_USE_package _ is automatically defined. This allows testing if a particular
package is invoked or not.

69

For example, if thealtreg package is included (see section 5.1), then the mactGE_ALTREG___ is
defined.

4.12.9 __pPAss__: Assembly Pass

The macro__PaSs___is defined to be on preparatory passes, anan the final pass. In preprocess—only
mode, it is set t@, and when running only to generate dependencies (due teMttog -MG option, see
section 2.1.4) it is set to.

Avoid using this macro if at all possible. It is tremendously easy to generate very strange errors by misusing
it, and the semantics may change in future versions of NASM.

4.12.10 sTRUC and ENDSTRUC: Declaring Structure Data Types

70

The core of NASM contains no intrinsic means of defining data structures; instead, the preprocessor is
sufficiently powerful that data structures can be implemented as a set of macros. The 3nacosand
ENDSTRUC are used to define a structure data type.

STRUC takes one or two parameters. The first parameter is the name of the data type. The second, optional
parameter is the base offset of the structure. The name of the data type is defined as a symbol with the value
of the base offset, and the name of the data type with the suffixe appended to it is defined as BQU

giving the size of the structure. OnegRUC has been issued, you are defining the structure, and should
define fields using thekEsB family of pseudo-instructions, and then invokEDSTRUC to finish the
definition.

For example, to define a structure catiegk ype containing a longword, a word, a byte and a string of bytes,
you might code

struc mytype

mt_long: resd 1

mt_word: resw 1

mt_byte: resb 1

mt_str: resb 32
endstruc

The above code defines six symbals; 1ong as 0 (the offset from the beginning ofiat ype structure to
the longword field)mt_word as 4mt_byte as 6mt_str as 7mytype_size as 39, anthytype itself
as zero.

The reason why the structure type name is defined at zero by default is a side effect of allowing structures to
work with the local label mechanism: if your structure members tend to have the same names in more than
one structure, you can define the above structure like this:

struc mytype

.long: resd 1

.word: resw 1

.byte: resb 1

.str: resb 32
endstruc

This defines the offsets to the structure fieldsmgs ype.long, mytype.word, mytype.byte and
mytype.str.

NASM, since it has nintrinsic structure support, does not support any form of period notation to refer to the
elements of a structure once you have one (except the above local-label notation), so code such as
mov ax, [mystruc.mt_word] is not valid.mt_word is a constant just like any other constant, so the
COWeCtSWﬂaXimov ax, [mystruc+mt_word] Ormov ax, [mystruc+mytype.word].

Sometimes you only have the address of the structure displaced by an offset. For example, consider this
standard stack frame setup:

push ebp
mov ebp, esp
sub esp, 40

In this case, you could access an element by subtracting the offset:

mov [ebp - 40 + mytype.word], ax

However, if you do not want to repeat this offset, you can use —40 as a base offset:
struc mytype, -40

And access an element this way:

mov [ebp + mytype.word], ax

4.12.11 ISTRUC, AT and IEND: Declaring Instances of Structures

Having defined a structure type, the next thing you typically want to do is to declare instances of that structure
in your data segment. NASM provides an easy way to do this imdh&Uuc mechanism. To declare a
structure of typenytype in a program, you code something like this:

mystruc:
istruc mytype

at mt_long, dd 123456

at mt_word, dw 1024

at mt_byte, db rx’

at mt_str, db "hello, world’, 13, 10, O
iend

The function of theaT macro is to make use of tHeEMES prefix to advance the assembly position to the
correct point for the specified structure field, and then to declare the specified data. Therefore the structure
fields must be declared in the same order as they were specified in the structure definition.

If the data to go in a structure field requires more than one source line to specify, the remaining source lines
can easily come after ther line. For example:

at mt_str, db 123,134,145,156,167,178,189
db 190,100,0

Depending on personal taste, you can also omit the code partzof thee completely, and start the structure
field on the next line:

71

at mt_str
db "hello, world’
db 13,10,0

4.12.12 ALIGN and ALIGNB: Data Alignment

72

The ALIGN and ALIGNB macros provides a convenient way to align code or data on a word, longword,
paragraph or other boundary. (Some assemblers call this dirasti®.) The syntax of the&LIGN and
ALIGNB macros is

align 4 ; align on 4-byte boundary
align 16 ; align on 1l6-byte boundary
align 8,db 0 ; pad with Os rather than NOPs
align 4,resb 1 ; align to 4 in the BSS

alignb 4 ; equivalent to previous line

Both macros require their first argument to be a power of two; they both compute the number of additional
bytes required to bring the length of the current section up to a multiple of that power of two, and then apply
the TIMES prefix to their second argument to perform the alignment.

If the second argument is not specified, the defaultafbrGN is NOP, and the default fORLIGNB is

RESB 1. So if the second argument is specified, the two macros are equivalent. Normally, you can just use
ALIGN in code and data sections anbdIGNB in BSS sections, and never need the second argument except
for special purposes.

ALIGN andALIGNB, being simple macros, perform no error checking: they cannot warn you if their first
argument fails to be a power of two, or if their second argument generates more than one byte of code. In each
of these cases they will silently do the wrong thing.

ALIGNB (or ALIGN with a second argument RESB 1) can be used within structure definitions:

struc mytype2

mt_byte:

resb 1

alignb 2
mt_word:

resw 1

alignb 4
mt_long:

resd 1
mt_str:

resb 32

endstruc

This will ensure that the structure members are sensibly aligned relative to the base of the structure.

A final caveat:ALIGN andALIGNB work relative to the beginning of tteection not the beginning of the
address space in the final executable. Aligning to a 16—-byte boundary when the section you're in is only
guaranteed to be aligned to a 4-byte boundary, for example, is a waste of effort. Again, NASM does not
check that the section’s alignment characteristics are sensible for thenisesof or ALIGNB.

BothALIGN andALIGNB do callSECTALIGN macro implicitly. See section 4.12.13 for details.

See also themartalign standard macro package, section 5.2.

4.12.13 SECTALIGN: Section Alignment

The SECTALIGN macros provides a way to modify alignment attribute of output file section. Unlike the
align= attribute (which is allowed at section definition only) $#®CTALIGN macro may be used at any
time.

For example the directive
SECTALIGN 16

sets the section alignment requirements to 16 bytes. Once increased it can not be decreased, the magnituds
may grow only.

Note thataAL.IGN (see section 4.12.12) calls thkeCTALIGN macro implicitly so the active section alignment
requirements may be updated. This is by default behaviour, if for some reason you wenit diiedo not
call SECTALIGN at all use the directive

SECTALIGN OFF
It is still possible to turn in on again by

SECTALIGN ON

73

74

5.1

5.2

Chapter 5: Standard Macro Packages

The suse directive (see section 4.6.4) includes one of the standard macro packages included with the NASM
distribution and compiled into the NASM binary. It operates likestheclude directive (see section 4.6.1),
but the included contents is provided by NASM itself.

The names of standard macro packages are case insensitive, and can be quoted or not.

altreg: Alternate Register Names

The altreg standard macro package provides alternate register names. It provides numeric register names
for all registers (not jusk8—R15), the Intel-defined aliase®81.—R151L for the low bytes of register (as
opposed to the NASM/AMD standard namr8B-R15B), and the name®R0H-R3H (by analogy with
ROL-R3L) for AH, CH, DH, andBH.

Example use:

$use altreg

proc:
mov r0l,r3h ; mov al,bh
ret

See also section 11.1.

smartalign: Smart ALIGN Macro

The smartalign standard macro package provides forartGN macro which is more powerful than the
default (and backwards—compatible) one (see section 4.12.12). Whenahealign package is enabled,
when ALIGN is used without a second argument, NASM will generate a sequence of instructions more
efficient than a series afop. Furthermore, if the padding exceeds a specific threshold, then NASM will
generate a jump over the entire padding sequence.

The specific instructions generated can be controlled with thean@®NMODE macro. This macro takes two
parameters: one mode, and an optional jump threshold override. If (for any reason) you need to turn off the
jump completely just set jump threshold value to —1 (or setibtimp). The following modes are possible:

e generic: Works on all x86 CPUs and should have reasonable performance. The default jump threshold
is 8. This is the default.

e nop: Pad out withnoP instructions. The only difference compared to the standamiN macro is that
NASM can still jump over a large padding area. The default jump threshold is 16.

e k7: Optimize for the AMD K7 (Athlon/Althon XP). These instructions should still work on all x86 CPUs.
The default jump threshold is 16.

e k8: Optimize for the AMD K8 (Opteron/Althon 64). These instructions should still work on all x86 CPUs.
The default jump threshold is 16.

e p6: Optimize for Intel CPUs. This uses the langp instructions first introduced in Pentium Pro. This is
incompatible with all CPUs of family 5 or lower, as well as some VIA CPUs and several virtualization
solutions. The default jump threshold is 16.

The macro__ALIGNMODE___is defined to contain the current alignment mode. A number of other macros
beginning with__AL.IGN__ are used internally by this macro package.

5.3 £p: Floating—point macros

This packages contains the following floating—point convenience macros:

$define Inf _ Infinity_
%$define NaN ___ONaN___
$define QNaN ___ONaN___
$define SNaN __SNaN___
$define float8 (x) _ float8__ (x)
$define floatl6 (x) _ _floatle6e__ (x)
$define float32 (x) _ float32__ (x)
$define float64 (x) _ _float6d__ (x)
$define float80m(x) _ float80m__ (x)
$define float80e (x) _ float80e__ (x)
%$define floatl281 (x) _ floatl1l281_ (x)
$define floatl28h (x) _ floatl28h__ (x)

5.4 ifunc: Integer functions

This package contains a set of macros which implement integer functions. These are actually implemented as
special operators, but are most conveniently accessed via this macro package.

The macros provided are:

5.4.1 Integer logarithms

These functions calculate the integer logarithm base 2 of their argument, considered as an unsigned integer.
The only differences between the functions is their behavior if the argument provided is not a power of two.

The functionilog2e () (aliasilog2 ()) generate an error if the argument is not a power of two.
The functionilog2w () generate a warning if the argument is not a power of two.

The functionilog2f () rounds the argument down to the nearest power of two; if the argument is zero it
returns zero.

The functionilog2c () rounds the argument up to the nearest power of two.

75

76

Chapter 6: Assembler Directives

NASM, though it attempts to avoid the bureaucracy of assemblers like MASM and TASM, is nevertheless
forced to support fewdirectives. These are described in this chapter.

NASM'’s directives come in two typesiser—level directives andprimitive directives. Typically, each
directive has a user-level form and a primitive form. In almost all cases, we recommend that users use the
user—level forms of the directives, which are implemented as macros which call the primitive forms.

Primitive directives are enclosed in square brackets; user-level directives are not.

In addition to the universal directives described in this chapter, each object file format can optionally supply
extra directives in order to control particular features of that file format. Thasat-specificdirectives are
documented along with the formats that implement them, in chapter 7.

6.1 BITS: Specifying Target Processor Mode

The BITS directive specifies whether NASM should generate code designed to run on a processor operating
in 16-bit mode, 32-hit mode or 64-bit mode. The syntaxiss xx, where XX is 16, 32 or 64.

In most cases, you should not need to Bs&S explicitly. The aout, coff, elf, macho, win32 and

win64 object formats, which are designed for use in 32-bit or 64-bit operating systems, all cause NASM to
select 32-bit or 64-bit mode, respectively, by default. ¥hg object format allows you to specify each
segment you define as eithese16 or USE32, and NASM will set its operating mode accordingly, so the
use of theITs directive is once again unnecessary.

The most likely reason for using tBa TS directive is to write 32-bit or 64-bit code in a flat binary file; this
is because thein output format defaults to 16-hit mode in anticipation of it being used most frequently to
write DOS . coM programs, DOS sys device drivers and boot loader software.

You donot need to specifBITS 32 merely in order to use 32-bit instructions in a 16—bit DOS program; if
you do, the assembler will generate incorrect code because it will be writing code targeted at a 32-bit
platform, to be run on a 16-bit one.

When NASM is inBITS 16 mode, instructions which use 32-bit data are prefixed with an 0x66 byte, and
those referring to 32-bit addresses have an 0x67 prefigIffrs 32 mode, the reverse is true: 32-hit
instructions require no prefixes, whereas instructions using 16-bit data need an 0x66 and those working on
16-bit addresses need an 0x67.

When NASM is inBITS 64 mode, most instructions operate the same as they deifbg 32 mode.
However, there are 8 more general and SSE registers, and 16-hit addressing is no longer supported.

The default address size is 64 bits; 32-bit addressing can be selected with the 0x67 prefix. The default
operand size is still 32 bits, however, and the 0x66 prefix selects 16-bit operand sgexTprefix is used

both to select 64-bit operand size, and to access the new registers. NASM automatically inserts REX prefixes
when necessary.

When theREX prefix is used, the processor does not know how to address the AH, BH, CH or DH (high 8-bit
legacy) registers. Instead, it is possible to access the the low 8-bits of the SP, BP Sl and DI registers as SPL,
BPL, SIL and DIL, respectively; but only when the REX prefix is used.

TheBITS directive has an exactly equivalent primitive forrBITS 16], [BITS 32] and[BITS 64].
The user-level form is a macro which has no function other than to call the primitive form.

Note that the space is neccessary,®Ig.S32 will notwork!

6.1.1 usEle & USE32: Aliases for BITS

6.2

The USE16’ and ‘USE32’ directives can be used in place 8ff'Ts 16’ and ‘BITS 32, for compatibility
with other assemblers.

DEFAULT: Change the assembler defaults

The DEFAULT directive changes the assembler defaults. Normally, NASM defaults to a mode where the
programmer is expected to explicitly specify most features directly. However, this is occationally obnoxious,
as the explicit form is pretty much the only one one wishes to use.

Currently,DEFAULT can seREL & ABS andBND & NOBND.

6.2.1 REL & ABS: RIP-relative addressing

This sets whether registerless instructions in 64-bit moderaperelative or not. By default, they are
absolute unless overridden with tReL specifier (see section 3.3). HowevemHEFAULT REL is specified,
REL is default, unless overridden with thess specifier,except when used with an FS or GS segment
override

The special handling afs andGs overrides are due to the fact that these registers are generally used as
thread pointers or other special functions in 64-bit mode, and generatimgelative addresses would be
extremely confusing.

DEFAULT REL is disabled WittDEFAULT ABS.

6.2.2 BND & NOBND: BND prefix

6.3

If DEFAULT BND is set, all bnd—prefix available instructions following this directive are prefixed with bnd.
To override it NOBND prefix can be used.

DEFAULT BND
call foo ; BND will be prefixed
nobnd call foo ; BND will NOT be prefixed

DEFAULT NOBND can disableDEFAULT BND and thenBND prefix will be added only when explicitly
specified in code.

DEFAULT BND is expected to be the normal configuration for writing MPX-enabled code.

SECTION or SEGMENT: Changing and Defining Sections

The SECTION directive EEGMENT is an exactly equivalent synonym) changes which section of the output
file the code you write will be assembled into. In some object file formats, the number and names of sections
are fixed; in others, the user may make up as many as they wish. $BITCEON may sometimes give an

error message, or may define a new section, if you try to switch to a section that does not (yet) exist.

The Unix object formats, and the n object format (but see section 7.1.3, all support the standardized section
names.text, .data and .bss for the code, data and uninitialized—data sections. dih¢ format, by

contrast, does not recognize these section names as being special, and indeed will strip off the leading period
of any section name that has one.

77

6.3.1 The__SECT__ Macro

The SECTION directive is unusual in that its user—level form functions differently from its primitive form.
The primitive form, [SECTION xy=z], simply switches the current target section to the one given. The
user—level formSECTION xyz, however, first defines the single-line macrosECT___ to be the primitive
[SECTION] directive which it is about to issue, and then issues it. So the user—level directive

SECTION .text
expands to the two lines

%define __ SECT___ [SECTION .text]
[SECTION .text]

Users may find it useful to make use of this in their own macros. For examplerthefile macro
defined in section 4.3.3 can be usefully rewritten in the following more sophisticated form:

$macro writefile 2+

[section .data]

$%str: db %2
$%endstr:
SECT
mov dx, $%str
mov cx, %%endstr—-%%str
mov bx, %1
mov ah, 0x40
int 0x21
$endmacro

This form of the macro, once passed a string to output, first switches temporarily to the data section of the file,
using the primitive form of theECTION directive so as not to modify _SECT__. It then declares its string

in the data section, and then invokessECT___ to switch back tavhicheversection the user was previously
working in. It thus avoids the need, in the previous version of the macro, to inclteiastruction to jump

over the data, and also does not falil if, in a complicated format module, the user could potentially be
assembling the code in any of several separate code sections.

6.4 ABSOLUTE: Defining Absolute Labels

The ABSOLUTE directive can be thought of as an alternative forns@ETION: it causes the subsequent
code to be directed at no physical section, but at the hypothetical section starting at the given absolute address.
The only instructions you can use in this mode ar&ktfgs family.

ABSOLUTE is used as follows:
absolute 0x1A
kbuf_chr resw 1

kbuf_free resw 1
kbuf resw 16

This example describes a section of the PC BIOS data area, at segment address 0x40: the above code define
kbuf_chr to be Ox1Akbuf_free to be 0x1C, an#tbuf to be OX1E

The user-level form oRBSOLUTE, like that of SECTION, redefines the SECT___ macro when it is
invoked.

STRUC andENDSTRUC are defined as macros which es&soLUTE (and alsqQ__SECT__).

ABSOLUTE doesn't have to take an absolute constant as an argument: it can take an expression (actually, a
critical expression: see section 3.8) and it can be a value in a segment. For example, a TSR can re-use its
setup code as run-time BSS like this:

org 100h ; it’s a .COM program
Jjmp setup ; setup code comes last
; the resident part of the TSR goes here

setup:

; now write the code that installs the TSR here

absolute setup

runtimevarl resw 1
runtimevar?2 resd 20
tsr_end:

This defines some variables ‘on top of the setup code, so that after the setup has finished running, the space it
took up can be re—used as data storage for the running TSR. The symbol ‘tsr_end’ can be used to calculate the
total size of the part of the TSR that needs to be made resident.

6.5 EXTERN: Importing Symbols from Other Modules

EXTERN is similar to the MASM directiv&XTRN and the C keywordxtern: it is used to declare a symbol

which is not defined anywhere in the module being assembled, but is assumed to be defined in some other
module and needs to be referred to by this one. Not every object-file format can support external variables:
thebin format cannot.

The EXTERN directive takes as many arguments as you like. Each argument is the name of a symbol:

extern _printf
extern _sscanf,_fscanf

Some object-file formats provide extra features toRREERN directive. In all cases, the extra features are
used by suffixing a colon to the symbol name followed by object-format specific text. For example; the
format allows you to declare that the default segment base of an external should be thiggraup by
means of the directive

extern _variable:wrt dgroup

The primitive form ofEXTERN differs from the user—level form only in that it can take only one argument at
a time: the support for multiple arguments is implemented at the preprocessor level.

You can declare the same variableExTERN more than once: NASM will quietly ignore the second and
later redeclarations. You can't declare a variablexagERN as well as something else, though.

79

6.6 GLOBAL: Exporting Symbols to Other Modules

GLOBAL is the other end afXTERN: if one module declares a symbol E$TERN and refers to it, then in
order to prevent linker errors, some other module must actiefigethe symbol and declare it a5.0BAL.
Some assemblers use the nameLIC for this purpose.

TheGLOBAL directive applying to a symbol must appbaforethe definition of the symbol.

GLOBAL uses the same syntax®STERN, except that it must refer to symbols whatle defined in the same
module as theLLOBAL directive. For example:

global _main
_main:
; some code

GLOBAL, like EXTERN, allows object formats to define private extensions by means of a colore1the
object format, for example, lets you specify whether global data items are functions or data:

global hashlookup:function, hashtable:data

Like EXTERN, the primitive form ofcLOBAL differs from the user—level form only in that it can take only
one argument at a time.

6.7 COMMON: Defining Common Data Areas

The coMMON directive is used to declamommon variablesA common variable is much like a global
variable declared in the uninitialized data section, so that

common intvar 4
is similar in function to
global intvar
section .bss
intvar resd 1

The difference is that if more than one module defines the same common variable, then at link time those
variables will benerged and references tontvar in all modules will point at the same piece of memory.

Like GLOBAL and EXTERN, COMMON supports object-format specific extensions. For examplepthe
format allows common variables to be NEAR or FAR, and ¢he& format allows you to specify the
alignment requirements of a common variable:

common commvar 4:near ; works in OBJ
common intarray 100:4 ; works in ELF: 4 byte aligned

Once again, lik&xTERN andGLOBAL, the primitive form ofcomMoN differs from the user—level form only
in that it can take only one argument at a time.

6.8 cpuU: Defining CPU Dependencies
Thecpu directive restricts assembly to those instructions which are available on the specified CPU.
Options are:

e CPU 8086 Assemble only 8086 instruction set

6.9

e CPU 186 Assemble instructions up to the 80186 instruction set
e CPU 286 Assemble instructions up to the 286 instruction set
e CPU 386 Assemble instructions up to the 386 instruction set
e CPU 486 486 instruction set

e CPU 586 Pentium instruction set

e CPU PENTIUM Same as 586

* CPU 686 P6 instruction set

e CPU PPRO Same as 686

e CPU P2 Same as 686

e CPU P3 Pentium lll (Katmai) instruction sets

e CPU KATMAI Same as P3

e CPU P4 Pentium 4 (Willamette) instruction set

e CPU WILLAMETTE Same as P4

e CPU PRESCOTT Prescott instruction set

e CPU X64 x86-64 (x64/AMD64/Intel 64) instruction set

e CPU IA64 IA64 CPU (in x86 mode) instruction set

All options are case insensitive. All instructions will be selected only if they apply to the selected CPU or
lower. By default, all instructions are available.

FLOAT: Handling of floating—point constants

By default, floating—point constants are rounded to nearest, and IEEE denormals are supported. The following
options can be set to alter this behaviour:

e FLOAT DAZ Flush denormals to zero

e FLOAT NODAZ Do not flush denormals to zero (default)
e FLOAT NEAR Round to nearest (default)

e FLOAT UP Round up (toward +Infinity)

e FLOAT DOWN Round down (toward —Infinity)

e FLOAT ZERO Round toward zero

e FLOAT DEFAULT Restore default settings

The standard macros FLOAT_DAZ__ , _ FLOAT_ROUND__, and__FLOAT___ contain the current state,
as long as the programmer has avoided the use of the brackeded primitive faon1]).

__FLOAT___ contains the full set of floating—point settings; this value can be saved away and invoked later to
restore the setting.

81

Chapter 7: Output Formats

NASM is a portable assembler, designed to be able to compile on any ANSI C-supporting platform and
produce output to run on a variety of Intel x86 operating systems. For this reason, it has a large number of
available output formats, selected using #feoption on the NASM command line. Each of these formats,
along with its extensions to the base NASM syntax, is detailed in this chapter.

As stated in section 2.1.1, NASM chooses a default name for your output file based on the input file name and
the chosen output format. This will be generated by removing the extensisn,(. s, or whatever you like

to use) from the input file name, and substituting an extension defined by the output format. The extensions
are given with each format below.

7.1 bin: Flat—Form Binary Output

The bin format does not produce object files: it generates nothing in the output file except the code you
wrote. Such ‘pure binary’ files are used by MS-DQS0M executables andsys device drivers are pure
binary files. Pure binary output is also useful for operating system and boot loader development.

The bin format supports multiple section names. For details of how NASM handles sectionsbifinthe
format, see section 7.1.3.

Using thebin format puts NASM by default into 16—bit mode (see section 6.1). In order teiusto write
32-bit or 64-bit code, such as an OS kernel, you need to explicitly issee1le 32 orBITS 64 directive.

bin has no default output file name extension: instead, it leaves your file name as it is once the original
extension has been removed. Thus, the default is for NASM to asseinbteog.asm into a binary file
calledbinprog

7.1.1 ORG: Binary File Program Origin

Thebin format provides an additional directive to the list given in chapter@: The function of theRG
directive is to specify the origin address which NASM will assume the program begins at when it is loaded
into memory.

For example, the following code will generate the longwixtd0000104:

org 0x100
dd label
label:

Unlike the ORG directive provided by MASM-compatible assemblers, which allows you to jump around in
the object file and overwrite code you have already generated, NASM'sloes exactly what the directive
says:origin. Its sole function is to specify one offset which is added to all internal address references within
the section; it does not permit any of the trickery that MASM'’s version does. See section 12.1.3 for further
comments.

7.1.2 bin Extensions to theSECTION Directive

Thebin output format extends th&ECTION (or SEGMENT) directive to allow you to specify the alignment
requirements of segments. This is done by appendingitheN qualifier to the end of the section—definition
line. For example,

section .data align=16
switches to the sectiordata and also specifies that it must be aligned on a 16-byte boundary.

The parameter taL.IGN specifies how many low bits of the section start address must be forced to zero. The
alignment value given may be any power of two.

7.1.3 Multisection Support for thebin Format

Thebin format allows the use of multiple sections, of arbitrary names, besides the "knowst, . data,
and .bss names.

« Sections may be designatedogbits or nobits. Default isprogbits (except.bss, which defaults
tonobits, of course).

e Sections can be aligned at a specified boundary following the previous sectioalwitn=, or at an
arbitrary byte—granular position wigttart=.

e Sections can be given a virtual start address, which will be used for the calculation of all memory
references within that section wittstart=.

e Sections can be ordered usifigllows=<section> Oor vfollows=<section> as an alternative to
specifying an explicit start address.

e Arguments toorg, start, vstart, and align= are critical expressions. See section 3.8. E.g.
align=(1 << ALIGN_SHIFT) —ALIGN_SHIFT must be defined before it is used here.

* Any code which comes before an explisitCTION directive is directed by default into thecext
section.

e If an ORG statement is not givedRG 0 is used by default.

e The .bss section will be placed after the lagtrogbits section, unlessstart=, vstart=,
follows=, orvfollows= has been specified.

« All sections are aligned on dword boundaries, unless a different alignment has been specified.
« Sections may not overlap.

* NASM creates theection.<secname>.start for each section, which may be used in your code.

7.1.4 Map Files

Map files can be generated #f bin format by means of thémap] option. Map types o&11 (default),
brief, sections, segments, Of symbols may be specified. Output may be directedstodout
(default), stderr, or a specified file. E.gimap symbols myfile.map]. NoO "user form" exists, the
square brackets must be used.

83

84

7.2

7.3

7.4

ith: Intel Hex Output

The ith file format produces Intel hex—format files. Just asthe format, this is a flat memory image
format with no support for relocation or linking. It is usually used with ROM programmers and similar
utilities.

All extensions supported by thd n file format is also supported by theh file format.

ith provides a default output file—name extension dfh.

srec: Motorola S—Records Output

The srec file format produces Motorola S-records files. Just asthe format, this is a flat memory image
format with no support for relocation or linking. It is usually used with ROM programmers and similar
utilities.

All extensions supported by thd n file format is also supported by teeec file format.

srec provides a default output file—name extension efec.

obj: Microsoft OMF Object Files

The ob7 file format (NASM calls itob5 rather thanomf for historical reasons) is the one produced by
MASM and TASM, which is typically fed to 16—bit DOS linkers to produ@Et files. It is also the format
used by OS/2.

obj provides a default output file—name extension ol 5.

obj is not exclusively a 16-bit format, though: NASM has full support for the 32-bit extensions to the
format. In particular, 32-bibbj format files are used by Borland’s Win32 compilers, instead of using
Microsoft's newemin32 object file format.

The obj format does not define any special segment names: you can call your segments anything you like.
Typical names for segmentsdi § format files arecODE, DATA andBSS.

If your source file contains code before specifying an ex@edMENT directive, then NASM will invent its
own segment called NASMDEFSEG for you.

When you define a segment in an file, NASM defines the segment name as a symbol as well, so that you
can access the segment address of the segment. So, for example:

segment data
dvar: dw 1234

segment code

function:
mov ax,data ; get segment address of data
mov ds, ax ; and move it into DS
inc word [dvar] ; now this reference will work
ret

The obj format also enables the use of #®G andWRT operators, so that you can write code which does
things like

extern foo

mov ax,seg foo ; get preferred segment of foo
mov ds, ax

mov ax,data ; a different segment

mov es, ax

mov ax, [ds:foo] ; this accesses ‘foo’

mov [es:foo wrt data],bx ; so does this

7.4.1 obj Extensions to theSEGMENT Directive

The obj output format extends theEGMENT (or SECTION) directive to allow you to specify various
properties of the segment you are defining. This is done by appending extra qualifiers to the end of the
segment-definition line. For example,

segment code private align=16

defines the segmentode, but also declares it to be a private segment, and requires that the portion of it
described in this code module must be aligned on a 16—byte boundary.

The available qualifiers are:

PRIVATE, PUBLIC, COMMON and STACK specify the combination characteristics of the segment.
PRIVATE segments do not get combined with any others by the link@1.1C andSTACK segments get
concatenated together at link time; atwMMON segments all get overlaid on top of each other rather than
stuck end-to—end.

ALIGN is used, as shown above, to specify how many low bits of the segment start address must be forced
to zero. The alignment value given may be any power of two from 1 to 4096; in reality, the only values
supported are 1, 2, 4, 16, 256 and 4096, so if 8 is specified it will be rounded up to 16, and 32, 64 and 128
will all be rounded up to 256, and so on. Note that alignment to 4096-byte boundaries is a PharLap
extension to the format and may not be supported by all linkers.

CLASS can be used to specify the segment class; this feature indicates to the linker that segments of the
same class should be placed near each other in the output file. The class name can be any word, e.g.
CLASS=CODE.

OVERLAY, like cLASS, is specified with an arbitrary word as an argument, and provides overlay
information to an overlay—capable linker.

Segments can be declareduas16 or USE32, which has the effect of recording the choice in the object
file and also ensuring that NASM'’s default assembly mode when assembling in that segment is 16-bit or
32-bit respectively.

When writing OS/2 object files, you should declare 32-bit segmerts.as, which causes the default
segment base for anything in the segment to be the specialgraap and also defines the group if it is
not already defined.

The obj file format also allows segments to be declared as having a pre—-defined absolute segment
address, although no linkers are currently known to make sensible use of this feature; nevertheless, NASM
allows you to declare a segment SUCIBASMENT SCREEN ABSOLUTE=0xB800 if you need to. The
ABSOLUTE andALIGN keywords are mutually exclusive.

NASM'’s default segment attributes &8BLIC, ALIGN=1, ho class, no overlay, anbE16.

85

7.4.2 GROUP: Defining Groups of Segments

The ob4j format also allows segments to be grouped, so that a single segment register can be used to refer to
all the segments in a group. NASM therefore suppliesiwp directive, whereby you can code

segment data
; some data
segment bss
; some uninitialized data

group dgroup data bss

which will define a group calledgroup to contain the segmentsata andbss. Like SEGMENT, GROUP
causes the group name to be defined as a symbol, so that you can refer to awariablbhedata segment
asvar wrt data or asvar wrt dgroup, depending on which segment value is currently in your
segment register.

If you just refer tovar, however, andrar is declared in a segment which is part of a group, then NASM will
default to giving you the offset ofar from the beginning of theroup not the segment Therefore
SEG var, also, will return the group base rather than the segment base.

NASM will allow a segment to be part of more than one group, but will generate a warning if you do this.
Variables declared in a segment which is part of more than one group will default to being relative to the first
group that was defined to contain the segment.

A group does not have to contain any segments; you can still mrakeeferences to a group which does not
contain the variable you are referring to. OS/2, for example, defines the speciatgraupith no segments
in it.

7.4.3 UPPERCASE: Disabling Case Sensitivity in Output

Although NASM itself is case sensitive, some OMF linkers are not; therefore it can be useful for NASM to
output single—case object files. T@PERCASE format—specific directive causes all segment, group and
symbol names that are written to the object file to be forced to upper case just before being written. Within a
source file, NASM is still case—sensitive; but the object file can be written entirely in upper case if desired.

UPPERCASE is used alone on a line; it requires no parameters.

7.4.4 IMPORT: Importing DLL Symbols

The 1MPORT format-specific directive defines a symbol to be imported from a DLL, for use if you are
writing a DLL’s import library in NASM. You still need to declare the symbotaSERN as well as using
the IMPORT directive.

The IMPORT directive takes two required parameters, separated by white space, which are (respectively) the
name of the symbol you wish to import and the name of the library you wish to import it from. For example:

import WSAStartup wsock32.dll

A third optional parameter gives the name by which the symbol is known in the library you are importing it
from, in case this is not the same as the name you wish the symbol to be known by to your code once you
have imported it. For example:

import asyncsel wsock32.dll WSAAsyncSelect

7.4.5 EXPORT: Exporting DLL Symbols

The EXPORT format-specific directive defines a global symbol to be exported as a DLL symbol, for use if
you are writing a DLL in NASM. You still need to declare the symboasBAL as well as using the
EXPORT directive.

EXPORT takes one required parameter, which is the name of the symbol you wish to export, as it was defined
in your source file. An optional second parameter (separated by white space from the first) giwéertiad

name of the symbol: the name by which you wish the symbol to be known to programs using the DLL. If this
name is the same as the internal name, you may leave the second parameter off.

Further parameters can be given to define attributes of the exported symbol. These parameters, like the
second, are separated by white space. If further parameters are given, the external name must also be
specified, even if it is the same as the internal name. The available attributes are:

e resident indicates that the exported name is to be kept resident by the system loader. This is an
optimisation for frequently used symbols imported by name.

* nodata indicates that the exported symbol is a function which does not make use of any initialized data.

e parm=NNN, whereNNN is an integer, sets the number of parameter words for the case in which the symbol
is a call gate between 32-bit and 16-bit segments.

e An attribute which is just a number indicates that the symbol should be exported with an identifying
number (ordinal), and gives the desired number.

For example:

export myfunc

export myfunc TheRealMoreFormalLookingFunctionName
export myfunc myfunc 1234 ; export by ordinal
export myfunc myfunc resident parm=23 nodata

7.4.6 . .start: Defining the Program Entry Point

OMF linkers require exactly one of the object files being linked to define the program entry point, where
execution will begin when the program is run. If the object file that defines the entry point is assembled using
NASM, you specify the entry point by declaring the special symheltart at the point where you wish
execution to begin.

7.4.7 obj Extensions to theEXTERN Directive
If you declare an external symbol with the directive
extern foo

then references such asv ax, foo will give you the offset offoo from its preferred segment base (as
specified in whichever moduleoo is actually defined in). So to access the contentsoaf you will usually
need to do something like

mov ax,seqg foo ; get preferred segment base
mov es, ax ; move it into ES
mov ax, [es:foo] ; and use offset ‘foo’ from it

87

88

7.4.8

7.5

This is a little unwieldy, particularly if you know that an external is going to be accessible from a given
segment or group, saygroup. So ifDS already containedgroup, you could simply code

mov ax, [foo wrt dgroup]

However, having to type this every time you want to acd&ess can be a pain; so NASM allows you to
declarefoo in the alternative form

extern foo:wrt dgroup

This form causes NASM to pretend that the preferred segment baseoofs in fact dgroup; so the
expressiorseg foo will now returndgroup, and the expressiafbo is equivalent tcoo wrt dgroup.

This defaultwRT mechanism can be used to make externals appear to be relative to any group or segment in
your program. It can also be applied to common variables: see section 7.4.8.

obj Extensions to theCOMMON Directive

The obj format allows common variables to be either near or far; NASM allows you to specify which your
variables should be by the use of the syntax

common nearvar 2:near ; ‘nearvar’ is a near common
common farvar 10:far ; and ‘farvar’ is far

Far common variables may be greater in size than 64Kb, and so the OMF specification says that they are
declared as a number elementof a given size. So a 10-byte far common variable could be declared as ten
one-hyte elements, five two—byte elements, two five—byte elements or one ten-byte element.

SomeoMF linkers require the element size, as well as the variable size, to match when resolving common
variables declared in more than one module. Therefore NASM must allow you to specify the element size on
your far common variables. This is done by the following syntax:

common c_b5by2 10:far 5 ; two five-byte elements
common c_2by5 10:far 2 ; five two-byte elements

If no element size is specified, the default is 1. Alsofthr keyword is not required when an element size is
specified, since only far commons may have element sizes at all. So the above declarations could equivalently
be

common c_5by2 10:5 ; two five-byte elements
common c_2by5 10:2 ; five two-byte elements

In addition to these extensions, theMMON directive inobj also supports defaulttrRT specification like
EXTERN does (explained in section 7.4.7). So you can also declare things like

common foo 10:wrt dgroup
common bar l6:far 2:wrt data
common baz 24:wrt data:6

win32: Microsoft Win32 Object Files

The win32 output format generates Microsoft Win32 object files, suitable for passing to Microsoft linkers
such as Visual C++. Note that Borland Win32 compilers do not use this format, bob fisastead (see
section 7.4).

win32 provides a default output file—name extension ol 5.

Note that although Microsoft say that Win32 object files follow ¢tae’F (Common Object File Format)
standard, the object files produced by Microsoft Win32 compilers are not compatible with COFF linkers such
as DJGPP’s, and vice versa. This is due to a difference of opinion over the precise semantics of PC-relative
relocations. To produce COFF files suitable for DJGPP, use NASMEE output format; conversely, the

coff format does not produce object files that Win32 linkers can generate correct output from.

7.5.1 win32 Extensions to theSECTION Directive

Like the ob 5 format,win32 allows you to specify additional information on theCTION directive line, to

control the type and properties of sections you declare. Section types and properties are generated
automatically by NASM for the standard section namesxt, .data and .bss, but may still be
overridden by these qualifiers.

The available qualifiers are:

e code, or equivalentlytext, defines the section to be a code section. This marks the section as readable
and executable, but not writable, and also indicates to the linker that the type of the section is code.

* data andbss define the section to be a data section, analogousipdie. Data sections are marked as
readable and writable, but not executablet a declares an initialized data section, wheieas declares
an uninitialized data section.

e rdata declares an initialized data section that is readable but not writable. Microsoft compilers use this
section to place constants in it.

e info defines the section to be an informational section, which is not included in the executable file by the
linker, but may (for example) pass informatimrthe linker. For example, declaring anfo—type section
called. drectve causes the linker to interpret the contents of the section as command-line options.

e align=, used with a trailing number as #b7j, gives the alignment requirements of the section. The
maximum you may specify is 64: the Win32 object file format contains no means to request a greater
section alignment than this. If alignment is not explicitly specified, the defaults are 16-byte alignment for
code sections, 8-byte alignment for rdata sections and 4-byte alignment for data (and BSS) sections.
Informational sections get a default alignment of 1 byte (no alignment), though the value does not matter.

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text code align=16
section .data data align=4
section .rdata rdata align=8
section .bss bss align=4

Any other section name is treated by default likext.

7.5.2 win32: Safe Structured Exception Handling

Among other improvements in Windows XP SP2 and Windows Server 2003 Microsoft has introduced
concept of "safe structured exception handling." General idea is to collect handlers’ entry points in designated
read-only table and have alleged entry point verified against this table prior exception control is passed to the
handler. In order for an executable module to be equipped with such "safe exception handler table," all object
modules on linker command line has to comply with certain criteria. If one single module among them does
not, then the table in question is omitted and above mentioned run-time checks will not be performed for
application in question. Table omission is by default silent and therefore can be easily overlooked. One can
instruct linker to refuse to produce binary without such table by pagsingeseh command line option.

89

90

Without regard to this run-time check merits it's natural to expect NASM to be capable of generating
modules suitable forsafeseh linking. From developer’s viewpoint the problem is two—fold:

« how to adapt modules not deploying exception handlers of their own;

« how to adapt/develop modules utilizing custom exception handling;

Former can be easily achieved with any NASM version by adding following line to source code:
$@feat.00 equ 1

As of version 2.03 NASM adds this absolute symbol automatically. If it's not already present to be precise.
l.e. if for whatever reason developer would choose to assign another value in source file, it would still be
perfectly possible.

Registering custom exception handler on the other hand requires certain "magic." As of version 2.03
additional directive is implementedsafeseh, which instructs the assembler to produce appropriately
formatted input data for above mentioned "safe exception handler table." Its typical use would be:

section .text

extern _MessageBoxA@1l6
$if __NASM_VERSION_ID__ >= 0x02030000
safeseh handler ; register handler as "safe handler"
$endif
handler:
push DWORD 1 ; MB_OKCANCEL
push DWORD caption
push DWORD text
push DWORD O
call _MessageBoxAR16
sub eax, 1 ; incidentally suits as return value
; for exception handler
ret
global _main
_main:
push DWORD handler
push DWORD [fs:0]
mov DWORD [fs:0],esp ; engage exception handler
XOr eax,eax
mov eax, DWORD [eax] ; cause exception
pop DWORD [£fs:0] ; disengage exception handler
add esp, 4
ret
text: db "OK to rethrow, CANCEL to generate core dump’,0
caption:db "SEGV’, 0

section .drectve info
db " /defaultlib:user32.1lib /defaultlib:msvcrt.lib '

As you might imagine, it's perfectly possible to produce .exe binary with "safe exception handler table" and
yet engage unregistered exception handler. Indeed, handler is engaged by simply manipfiating
location at run—time, something linker has no power over, run-time that is. It should be explicitly mentioned
that such failure to register handler's entry point withfeseh directive has undesired side effect at

run—time. If exception is raised and unregistered handler is to be executed, the application is abruptly
terminated without any notification whatsoever. One can argue that system could at least have logged some
kind "non-safe exception handler in x.exe at address n" message in event log, but no, literally no notification
is provided and user is left with no clue on what caused application failure.

Finally, all mentions of linker in this paragraph refer to Microsoft linker version 7.x and later. Presence of
@feat .00 symbol and input data for "safe exception handler table" causes no backward incompatibilities
and "safeseh" modules generated by NASM 2.03 and later can still be linked by earlier versions or
non—-Microsoft linkers.

7.6 winé4: Microsoft Win64 Object Files

The win64 output format generates Microsoft Win64 object files, which is nearly 100% identical to the
win32 object format (section 7.5) with the exception that it is meant to target 64-bit code and the x86-64
platform altogether. This object file is used exactly the same agith@2 object format (section 7.5), in
NASM, with regard to this exception.

7.6.1 winé64: Writing Position—Independent Code

While REL takes good care of RIP-relative addressing, there is one aspect that is easy to overlook for a
Win64 programmer: indirect references. Consider a switch dispatch table:

Jjmp gword [dsptch+rax*8]
dsptch: dg case0
dg casel

Even a novice Win64 assembler programmer will soon realize that the code is not 64-bit savvy. Most notably
linker will refuse to link it with

"ADDR32’ relocation to ’.text’ invalid without /LARGEADDRESSAWARE :NO
So [s]he will have to split jmp instruction as following:

lea rbx, [rel dsptch]
Jjmp gword [rbx+rax*8]

What happens behind the scene is that effective address irs encoded relative to instruction pointer, or in
perfectly position-independent manner. But this is only part of the problem! Trouble is that in .dll context
caseN relocations will make their way to the final module and might have to be adjusted at .dll load time. To
be specific when it can't be loaded at preferred address. And when this occurs, pages with such relocations
will be rendered private to current process, which kind of undermines the idea of sharing .dll. But no worry,
it's trivial to fix:

lea rbx, [rel dsptch]
add rbx, [rbx+rax*8]
Jjmp rbx

dsptch: dg caseO-dsptch
dg casel-dsptch

NASM version 2.03 and later provides another alternatiner, . .imagebase operator, which returns
offset from base address of the current image, be it .exe or .dll module, therefore the name. For those

91

92

acquainted with PE-COFF format base address denotes stamiaGE_DOS_HEADER structure. Here is
how to implement switch with these image-relative references:

lea rbx, [rel dsptch]
mov eax, [rbx+trax*4]
sub rbx,dsptch wrt ..imagebase
add rbx, rax
Jjmp rbx
dsptch: dd casel wrt ..imagebase
dd casel wrt ..imagebase

One can argue that the operator is redundant. Indeed, snippet before last works just fine with any NASM
version and is not even Windows specific... The real reason for implementing. . imagebase will
become apparent in next paragraph.

It should be noted thatrt . .imagebase is defined as 32-hit operand only:

dd label wrt ..imagebase ; ok
dg label wrt ..imagebase ; bad
mov eax, label wrt ..imagebase ; ok
mov rax, label wrt ..imagebase ; bad

7.6.2 win64: Structured Exception Handling

Structured exception handing in Win64 is completely different matter from Win32. Upon exception program
counter value is noted, and linker—generated table comprising start and end addresses of all the functions [in
given executable module] is traversed and compared to the saved program counter. Thus so called
UNWIND_INFO structure is identified. If it's not found, then offending subroutine is assumed to be "leaf" and
just mentioned lookup procedure is attempted for its caller. In Win64 leaf function is such function that does
not call any other functionor modifies any Win64 non-volatile registers, including stack pointer. The latter
ensures that it's possible to identify leaf function’s caller by simply pulling the value from the top of the stack.

While majority of subroutines written in assembler are not calling any other function, requirement for
non-volatile registers’ immutability leaves developer with not more than 7 registers and no stack frame,
which is not necessarily what [s]he counted with. Customarily one would meet the requirement by saving
non-volatile registers on stack and restoring them upon return, so what can go wrong? If [and only if] an
exception is raised at run—time and WWIND_INFO structure is associated with such "leaf" function, the

stack unwind procedure will expect to find caller’s return address on the top of stack immediately followed by
its frame. Given that developer pushed caller’s non-volatile registers on stack, would the value on top point at
some code segment or even addressable space? Well, developer can attempt copying caller’s return address t
the top of stack and this would actually work in some very specific circumstances. But unless developer can
guarantee that these circumstances are always met, it's more appropriate to assume worst case scenario, i.€
stack unwind procedure going berserk. Relevant question is what happens then? Application is abruptly
terminated without any natification whatsoever. Just like in Win32 case, one can argue that system could at
least have logged "unwind procedure went berserk in x.exe at address n" in event log, but no, no trace of
failure is left.

Now, when we understand significance of thetIND_INFO structure, let’s discuss what's in it and/or how
it's processed. First of all it is checked for presence of reference to custom language—specific exception
handler. If there is one, then it's invoked. Depending on the return value, execution flow is resumed
(exception is said to be "handled9r; rest of UNWIND_INFO structure is processed as following. Beside
optional reference to custom handler, it carries information about current callee’'s stack frame and where

non-volatile registers are saved. Information is detailed enough to be able to reconstruct contents of caller's
non-volatile registers upon call to current callee. And so caller's context is reconstructed, and then unwind
procedure is repeated, i.e. anoth®WIND_INFO structure is associated, this time, with caller’s instruction
pointer, which is then checked for presence of reference to language—specific handler, etc. The procedure is
recursively repeated till exception is handled. As last resort system "handles" it by generating memory core
dump and terminating the application.

As for the moment of this writing NASM unfortunately does not facilitate generation of above mentioned

detailed information about stack frame layout. But as of version 2.03 it implements building blocks for

generating structures involved in stack unwinding. As simplest example, here is how to deploy custom
exception handler for leaf function:

default rel
section .text
extern MessageBoxA

handler:
sub rsp, 40
mov rcx, 0
lea rdx, [text]
lea r8, [caption]
mov r9,1 ; MB_OKCANCEL
call MessageBoxA
sub eax, 1 ; incidentally suits as return value
; for exception handler
add rsp, 40
ret

global main

main:
XOor rax, rax
mov rax, QWORD [rax] ; cause exception
ret
main_end:
text: db "OK to rethrow, CANCEL to generate core dump’,0
caption:db "SEGV’, 0

section .pdata rdata align=4

dd main wrt ..imagebase
dd main_end wrt ..imagebase
dd xmain wrt ..imagebase
section .xdata rdata align=8
xmain: db 9,0,0,0
dd handler wrt ..imagebase
section .drectve info
db " /defaultlib:user32.1ib /defaultlib:msvcrt.lib '

What you see inpdata section is element of the "table comprising start and end addresses of function”
along with reference to associatetiWwIND_INFO structure. And what you see inxdata section is
UNWIND_INFO structure describing function with no frame, but with designated exception handler.
References arerequired to be image-relative (which is the real reason for implementing
wrt ..imagebase operator). It should be noted thatdata align=n, as well as

93

94

wrt ..imagebase, are optional in these two segments’ contexts, i.e. can be omitted. Latter meails that
32-bit references, not only above listed required ones, placed into these two segments turn out
image-relative. Why is it important to understand? Developer is allowed to append handler—specific data to
UNWIND_INFO structure, and if [she adds a 32-bit reference, then [s]he will have to remember to adjust its
value to obtain the real pointer.

As already mentioned, in Win64 terms leaf function is one that does not call any other faoctioodifies

any non-volatile register, including stack pointer. But it's not uncommon that assembler programmer plans to
utilize every single register and sometimes even have variable stack frame. Is there anything one can do with
bare building blocks? I.e. besides manually composing fully-fledged ND__INFO structure, which would

surely be considered error—prone? Yes, there is. Recall that exception handler is called first, before stack
layout is analyzed. As it turned out, it's perfectly possible to manipulate current callee’s context in custom
handler in manner that permits further stack unwinding. General idea is that handler would not actually
"handle" the exception, but instead restore callee’s context, as it was at its entry point and thus mimic leaf
function. In other words, handler would simply undertake part of unwinding procedure. Consider following
example:

function:
mov rax, rsp ; copy rsp to volatile register
push rl5 ; save non-volatile registers
push rbx
push rbp
mov rll, rsp ; prepare variable stack frame
sub rll, rcx
and rll,-64
mov QWORD[rll],rax ; check for exceptions
mov rsp,rll ; allocate stack frame
mov QWORD [rsp]l,rax ; save original rsp value

magic_point:

mov rll, QWORD [rsp] ; pull original rsp value

[
mov rbp, QWORD [r11-24]
mov rbx, QWORD[r11-16]
mov rl5,QWORD[r11-8]
mov rsp,rll ; destroy frame
ret

The keyword is that up teagic_point original rsp value remains in chosen volatile register and no
non-volatile register, except farsp, is modified. While pashagic_point rsp remains constant till the
very end of theunction. In this case custom language—-specific exception handler would look like this:

EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
CONTEXT *context,DISPATCHER_CONTEXT *disp)
{ ULONG64 *rsp;
if (context—->Rip< (ULONG64)magic_point)

rsp = (ULONG64 *)context—->Rax;
else
{ rsp = ((ULONG64 **)context->Rsp) [0];
context->Rbp = rsp[-3];
context->Rbx = rsp[-2];
context->R15 = rsp[-1];

}
context—->Rsp = (ULONG64) rsp;

memcpy (disp—->ContextRecord,context,sizeof (CONTEXT)) ;

RtlVirtualUnwind (UNW_FLAG_NHANDLER, disp—->ImageBase,
dips—>ControlPc,disp—>FunctionEntry,disp->ContextRecord,
&disp->HandlerData, &disp—->EstablisherFrame, NULL) ;

return ExceptionContinueSearch;

}
As custom handler mimics leaf function, correspondimgiIND_INFO structure does not have to contain

any information about stack frame and its layout.

7.7 cof£: Common Object File Format
Thecof £ output type producesoFF object files suitable for linking with the DJGPP linker.
coff provides a default output file—name extension of

The cof £ format supports the same extensions to3heTION directive aswin32 does, except that the
align qualifier and theinfo section type are not supported.

7.8 macho32 andmacho64: Mach Object File Format

The macho32 andmacho64 output formts produceRach-0 object files suitable for linking with the
MacOS X linkermacho is a synonym fomacho32.

macho provides a default output file—name extension of

7.9 el£32,el1£f64, el£x32: Executable and Linkable Format Object Files

Theelf32, elf64 andelfx32 output formats generatlL.F32 and ELF64 (Executable and Linkable
Format) object files, as used by Linux as well as Unix System V, including Solaris x86, UnixWare and SCO
Unix. el £ provides a default output file—name extension ofel f is a synonym foel1£32.

Theelfx32 format is used for the x32 ABI, which is a 32—-bit ABI with the CPU in 64—bit mode.

7.9.1 ELF specific directiveosabi

The ELF header specifies the application binary interface for the target operating system (OSABI). This field
can be set by using thesabi directive with the numeric value (0-255) of the target system. If this directive

is not used, the default value will be "UNIX System V ABI" (0) which will work on most systems which
support ELF.

7.9.2 el £ Extensions to theSECTION Directive

Like the obj format, el £ allows you to specify additional information on thBCTION directive line, to
control the type and properties of sections you declare. Section types and properties are generated
automatically by NASM for the standard section names, but may still be overridden by these qualifiers.

The available qualifiers are:

e alloc defines the section to be one which is loaded into memory when the programns4in.oc
defines it to be one which is not, such as an informational or comment section.

95

* exec defines the section to be one which should have execute permission when the program is run.
noexec defines it as one which should not.

* write defines the section to be one which should be writable when the programriswtiite defines
it as one which should not.

e progbits defines the section to be one with explicit contents stored in the object file: an ordinary code
or data section, for examplepbits defines the section to be one with no explicit contents given, such as
a BSS section.

e align=, used with a trailing number asdivj, gives the alignment requirements of the section.
« tls defines the section to be one which contains thread local variables.

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text progbits alloc exec nowrite align=16
section .rodata progbits alloc noexec nowrite align=4
section .lrodata progbits alloc noexec nowrite align=4
section .data progbits alloc noexec write align=4
section .ldata progbits alloc noexec write align=4
section .bss nobits alloc noexec write align=4
section .lbss nobits alloc noexec write align=4
section .tdata progbits alloc noexec write align=4 tls
section .tbss nobits alloc noexec write align=4 tls

section .comment progbits noalloc noexec nowrite align=1
section other progbits alloc noexec nowrite align=1

(Any section name other than those in the above table is treated by default Hike in the above table.
Please note that section names are case sensitive.)

7.9.3 Position—-Independent Codea1£ Special Symbols anadRT

The ELF specification contains enough features to allow position—-independent code (PIC) to be written,
which makes ELF shared libraries very flexible. However, it also means NASM has to be able to generate a
variety of ELF specific relocation types in ELF object files, if it is to be an assembler which can write PIC.

SinceELF does not support segment-base referencesyriteoperator is not used for its normal purpose;
therefore NASM'self output format makes use @RT for a different purpose, namely the PIC-specific
relocation types.

elf defines five special symbols which you can use as the right-hand siden®thaperator to obtain PIC
relocation types. They are.gotpc, ..gotoff, ..got, ..plt and ..sym. Their functions are
summarized here:

« Referring to the symbol marking the global offset table base wsing . . gotpc will end up giving the
distance from the beginning of the current section to the global offset table.
(_GLOBAL_OFFSET_TABLE__ is the standard symbol name used to refer to the GOT.) So you would then
need to adg s to the result to get the real address of the GOT.

« Referring to a location in one of your own sections using . .gotoff will give the distance from the
beginning of the GOT to the specified location, so that adding on the address of the GOT would give the
real address of the location you wanted.

« Referring to an external or global symbol usimgt ..got causes the linker to build an enirythe
GOT containing the address of the symbol, and the reference gives the distance from the beginning of the
GOT to the entry; so you can add on the address of the GOT, load from the resulting address, and end up
with the address of the symbol.

« Referring to a procedure name usiagt ..plt causes the linker to build a procedure linkage table
entry for the symbol, and the reference gives the address of the PLT entry. You can only use this in
contexts which would generate a PC-relative relocation normally (i.e. as the destinatinnifasr JMP),
since ELF contains no relocation type to refer to PLT entries absolutely.

« Referring to a symbol name usiagt ..sym causes NASM to write an ordinary relocation, but instead
of making the relocation relative to the start of the section and then adding on the offset to the symbol, it
will write a relocation record aimed directly at the symbol in question. The distinction is a necessary one
due to a peculiarity of the dynamic linker.

A fuller explanation of how to use these relocation types to write shared libraries entirely in NASM is given in
section 9.2.

7.9.4 Thread Local Storageel£ Special Symbols antWRT

« In ELF32 mode, referring to an external or global symbol usitigy . .t1sie causes the linker to build
an entryin the GOT containing the offset of the symbol within the TLS block, so you can access the value
of the symbol with code such as:

mov eax, [tid wrt ..tlsie]
mov [gs:eax],ebx

« In ELF64 or ELFx32 mode, referring to an external or global symbol wsittg . .gottpoff causes
the linker to build an entrin the GOT containing the offset of the symbol within the TLS block, so you
can access the value of the symbol with code such as:

mov rax, [rel tid wrt ..gottpoff]
mov rcx, [fs:rax]

7.9.5 el f Extensions to theGLOBAL Directive

ELF object files can contain more information about a global symbol than just its address: they can contain
the size of the symbol and its type as well. These are not merely debugger conveniences, but are actually
necessary when the program being written is a shared library. NASM therefore supports some extensions to
theGLOBAL directive, allowing you to specify these features.

You can specify whether a global variable is a function or a data object by suffixing the name with a colon
and the wordcunction ordata. (ocbject is a synonym fosata.) For example:

global hashlookup:function, hashtable:data
exports the global symbalashlookup as a function andashtable as a data object.

Optionally, you can control the ELF visibility of the symbol. Just add one of the visibility keywords:
default, internal, hidden, orprotected. The default islefault of course. For example, to make
hashlookup hidden:

global hashlookup:function hidden

You can also specify the size of the data associated with the symbol, as a numeric expression (which may
involve labels, and even forward references) after the type specifier. Like this:

97

98

global hashtable:data (hashtable.end - hashtable)

hashtable:
db this,that,theother ; some data here
.end:

This makes NASM automatically calculate the length of the table and place that information intcethe
symbol table.

Declaring the type and size of global symbols is necessary when writing shared library code. For more
information, see section 9.2.4.

7.9.6 elf Extensions to thecOMMON Directive

ELF also allows you to specify alignment requirements on common variables. This is done by putting a
number (which must be a power of two) after the name and size of the common variable, separated (as usual)
by a colon. For example, an array of doublewords would benefit from 4-byte alignment:

common dwordarray 128:4

This declares the total size of the array to be 128 bytes, and requires that it be aligned on a 4-byte boundary.

7.9.7 16-bit code and ELF

The ELF32 specification doesn't provide relocations for 8— and 16-bit values, but the XsNInker adds

these as an extension. NASM can generate GNU-compatible relocations, to allow 16-bit code to be linked as
ELF using GNU1d. If NASM is used with the-w+gnu-elf-extensions option, a warning is issued

when one of these relocations is generated.

7.9.8 Debug formats and ELF

7.10

7.11

ELF provides debug information sTABS andDWARF formats. Line number information is generated for all
executable sections, but please note that only the ".text" section is executable by default.

aout: Linux a.out Object Files

The aout format generates.out object files, in the form used by early Linux systems (current Linux
systems use ELF, see section 7.9.) These differ from athait object files in that the magic number in the
first four bytes of the file is different; also, some implementations.afut, for example NetBSD’s, support
position—-independent code, which Linux’s implementation does not.

a.out provides a default output file—name extension of

a.out Is a very simple object format. It supports no special directives, no special symbols, neEseDf
WRT, and no extensions to any standard directives. It supports only the three standard sectiar aames
.data and.bss.

aoutb: NetBSD/FreeBSD/OpenBS[a . out Object Files

The aoutb format generates . out object files, in the form used by the various fEs®d Unix clones,
NetBSD, FreeBSD andOpenBSD. For simple object files, this object format is exactly the samsoas

except for the magic number in the first four bytes of the file. Howeverathecb format supports
position—-independent code in the same way as tifeformat, so you can use it to wrisD shared libraries.

aoutb provides a default output file—name extension of

aoutb supports no special directives, no special symbols, and only the three standard sectiortaames
.data and .bss. However, it also supports the same use WKT as elf does, to provide
position—-independent code relocation types. See section 7.9.3 for full documentation of this feature.

aoutb also supports the same extensions to dheBAL directive aself does: see section 7.9.5 for
documentation of this.

7.12 as86: Minix/Linux as86 Object Files

The Minix/Linux 16-bit assembleas86 has its own non-standard object file format. Although its
companion linkerldgs6 produces something close to ordinaryout binaries as output, the object file
format used to communicate betweesg 6 and1d86 is not itselfa .. out.

NASM supports this format, just in case it is usefulaas6. as86 provides a default output file—name
extension of. o.

as86 is a very simple object format (from the NASM user’s point of view). It supports no special directives,
no use ofSEG or WRT, and no extensions to any standard directives. It supports only the three standard section
names. text, .data and.bss. The only special symbol supported.isstart.

7.13 rdf: Relocatable Dynamic Object File Format

The rdf output format produceRDOFF object files.RDOFF (Relocatable Dynamic Object File Format) is a
home-grown object-file format, designed alongside NASM itself and reflecting in its file format the internal
structure of the assembler.

RDOFF is not used by any well-known operating systems. Those writing their own systems, however, may
well wish to useRDOFF as their object format, on the grounds that it is designed primarily for simplicity and
contains very little file—header bureaucracy.

The Unix NASM archive, and the DOS archive which includes sources, both contattvaf subdirectory
holding a set of RDOFF utilities: an RDF linker, BDF static—library manager, an RDF file dump utility,
and a program which will load and execute an RDF executable under Linux.

rdf supports only the standard section namesxt, .data and.bss.

7.13.1 Requiring a Library: The LIBRARY Directive

RDOFF contains a mechanism for an object file to demand a given library to be linked to the module, either at
load time or run time. This is done by theBRARY directive, which takes one argument which is the name
of the module:

library mylib.rdl
7.13.2 Specifying a Module Name: ThMODULE Directive

Special RDOFF header record is used to store the name of the module. It can be used, for example, by
run—time loader to perform dynamic linkingODULE directive takes one argument which is the name of
current module:

module mymodname

Note that when you statically link modules and tell linker to strip the symbols from output file, all module
names will be stripped too. To avoid it, you should start module names Miite:

module Skernel.core

99

7.13.3 rdf Extensions to theGLOBAL Directive

RDOFF global symbols can contain additional information needed by the static linker. You can mark a global
symbol as exported, thus telling the linker do not strip it from target executable or library file. lEke ,in
you can also specify whether an exported symbol is a procedure (function) or data object.

Suffixing the name with a colon and the wergipbort you make the symbol exported:
global sys_open:export

To specify that exported symbol is a procedure (function), you add the pvard or function after
declaration:

global sys_open:export proc
Similarly, to specify exported data object, add the wixrda or object to the directive:

global kernel_ticks:export data

7.13.4 rdf Extensions to theeEXTERN Directive

100

By default theEXTERN directive inRDOFF declares a "pure external" symbol (i.e. the static linker will
complain if such a symbol is not resolved). To declare an "imported" symbol, which must be resolved later
during a dynamic linking phaseporF offers an additionalmport modifier. As inGLOBAL, you can also
specify whether an imported symbol is a procedure (function) or data object. For example:

library $libc

extern _open:import
extern _printf:import proc
extern _errno:import data

Here the directive,IBRARY is also included, which gives the dynamic linker a hint as to where to find
requested symbols.

7.14 dbg: Debugging Format

The dbg output format is not built into NASM in the default configuration. If you are building your own
NASM executable from the sources, you can defireDBG in output/out form.h or on the compiler
command line, and obtain thbg output format.

The dbg format does not output an object file as such; instead, it outputs a text file which contains a complete
list of all the transactions between the main body of NASM and the output—-format back end module. It is

primarily intended to aid people who want to write their own output drivers, so that they can get a clearer idea
of the various requests the main program makes of the output driver, and in what order they happen.

For simple files, one can easily use they format like this:
nasm —-f dbg filename.asm

which will generate a diagnostic file calleftlilename.dbg. However, this will not work well on files

which were designed for a different object format, because each object format defines its own macros (usually
user—level forms of directives), and those macros will not be defined itihdormat. Therefore it can be

useful to run NASM twice, in order to do the preprocessing with the native object format selected:

nasm —-e —-f rdf -o rdfprog.i rdfprog.asm
nasm —-a —-f dbg rdfprog.i

This preprocessesdfprog.asm into rdfprog. i, keeping therdf object format selected in order to
make sure RDF special directives are converted into primitive form correctly. Then the preprocessed source is
fed through thelbg format to generate the final diagnostic output.

This workaround will still typically not work for programs intended fsis§ format, because theb
SEGMENT andGROUP directives have side effects of defining the segment and group names as syitpols;

will not do this, so the program will not assemble. You will have to work around that by defining the symbols
yourself (usingeXTERN, for example) if you really need to getiag trace of arob j—specific source file.

dbg accepts any section name and any directives at all, and logs them all to its output file.

101

102

8.1

Chapter 8: Writing 16—bit Code (DOS, Windows 3/3.1)

This chapter attempts to cover some of the common issues encountered when writing 16—bit code to run
underMs-DOS or Windows 3.x. It covers how to link programs to producext or .coM files, how to

write . SYS device drivers, and how to interface assembly language code with 16-bit C compilers and with
Borland Pascal.

Producing . EXE Files

Any large program written under DOS needs to be built agx file: only . EXE files have the necessary
internal structure required to span more than one 64K segment. Windows programs, also, have to be built as
.EXE files, since Windows does not support tleom format.

In general, you generateXE files by using theobj output format to produce one or maresJ files, and

then linking them together using a linker. However, NASM also supports the direct generation of simple DOS
.EXE files using théoin output format (by usingB andDw to construct the EXE file header), and a macro
package is supplied to do this. Thanks to Yann Guidon for contributing the code for this.

NASM may also supportEXE natively as another output format in future releases.

8.1.1 Using theobj Format To Generate . EXE Files

This section describes the usual method of generating files by linking . OBJ files together.

Most 16-bit programming language packages come with a suitable linker; if you have none of these, there is a
free linker called VAL, available imzH archive format fromx2ftp.oulu. fi. An LZH archiver can be

found atftp.simtel.net. There is another ‘free’ linker (though this one doesn’t come with sources)
called FREELINK, available fromwvww.pcorner.com. A third, djlink, written by DJ Delorie, is
available atvww.delorie.com. A fourth linker,ALINK, written by Anthony A.J. Williams, is available at
alink.sourceforge.net.

When linking several 0B J files into a. EXE file, you should ensure that exactly one of them has a start point
defined (using the .start special symbol defined by th&b§ format: see section 7.4.6). If no module
defines a start point, the linker will not know what value to give the entry—point field in the output file header;
if more than one defines a start point, the linker will not kmévchvalue to use.

An example of a NASM source file which can be assembled.tora file and linked on its own to aEXE

is given here. It demonstrates the basic principles of defining a stack, initialising the segment registers, and
declaring a start point. This file is also provided in thket subdirectory of the NASM archives, under the
nameob jexe.asmn.

segment code

..start:
mov ax,data
mov ds, ax
mov ax, stack
mov Ss,ax
mov sp, stacktop

ftp://x2ftp.oulu.fi/pub/msdos/programming/lang/
ftp://ftp.simtel.net/pub/simtelnet/msdos/arcers
http://www.pcorner.com/tpc/old/3-101.html
http://www.delorie.com/djgpp/16bit/djlink/
http://alink.sourceforge.net

This initial piece of code sets m® to point to the data segment, and initializssandsp to point to the top
of the provided stack. Notice that interrupts are implicitly disabled for one instruction after a mosge,into
precisely for this situation, so that there’s no chance of an interrupt occurring between the fsadaddp
and not having a stack to execute on.

Note also that the special symhalstart is defined at the beginning of this code, which means that will be
the entry point into the resulting executable file.

mov dx,hello
mov ah, 9
int 0x21

The above is the main program: load : DX with a pointer to the greeting message 1o is implicitly
relative to the segmentata, which was loaded intds in the setup code, so the full pointer is valid), and
call the DOS print=string function.

mov ax, 0x4c00
int 0x21

This terminates the program using another DOS system call.

segment data

hello: db "hello, world’, 13, 10, 'S’
The data segment contains the string we want to display.

segment stack stack
resb 64
stacktop:

The above code declares a stack segment containing 64 bytes of uninitialized stack space, and points
stacktop at the top of it. The directiveegment stack stack defines a segmesgtlled stack, and

also oftype STACK. The latter is not necessary to the correct running of the program, but linkers are likely to
issue warnings or errors if your program has no segment oEtymex.

The above file, when assembled into@BJ file, will link on its own to a valid. EXE file, which when run
will print ‘hello, world’ and then exit.

8.1.2 Using theoin Format To Generate . EXE Files

The .EXE file format is simple enough that it's possible to build BXE file by writing a pure—binary
program and sticking a 32-byte header on the front. This header is simple enough that it can be generated
usingDB andDwW commands by NASM itself, so that you can usekthe output format to directly generate

.EXE files.

Included in the NASM archives, in thei sc subdirectory, is a filexebin.mac of macros. It defines three
MacrosEXE_begin, EXE_stack andEXE_end.

To produce a EXE file using this method, you should start by uskiighclude to load theexebin.mac

macro package into your source file. You should then issu&:tiie begin macro call (which takes no
arguments) to generate the file header data. Then write code as normaldontfeemat — you can use all

three standard sectionsext, .data and.bss. At the end of the file you should call th&E_end macro

(again, no arguments), which defines some symbols to mark section sizes, and these symbols are referred to in
the header code generatedi®¥E_begin.

103

104

In this model, the code you end up writing startssat 00, just like a.coM file — in fact, if you strip off the
32-byte header from the resultingxE file, you will have a valid. com program. All the segment bases are
the same, so you are limited to a 64K program, again just likeca file. Note that arorG directive is
issued by th&XE_begin macro, so you should not explicitly issue one of your own.

You can't directly refer to your segment base value, unfortunately, since this would require a relocation in the
header, and things would get a lot more complicated. So you should get your segment base by copying it out
of cs instead.

On entry to your. EXE file, SS:SP are already set up to point to the top of a 2Kb stack. You can adjust the
default stack size of 2Kb by calling tlXE_stack macro. For example, to change the stack size of your
program to 64 bytes, you would calke_stack 64.

A sample program which generates BXE file in this way is given in theest subdirectory of the NASM
archive, a®inexe.asm.

8.2 Producing.coM Files

While large DOS programs must be written.axE files, small ones are often better written.aoM files.
.coM files are pure binary, and therefore most easily produced usiig theutput format.

8.2.1 Using thebin Format To Generate .CcoM Files

.coM files expect to be loaded at offseboh into their segment (though the segment may change).
Execution then begins abo0h, i.e. right at the start of the program. So to writecam program, you would
create a source file looking like

org 100h
section .text

start:
; put your code here

section .data
; put data items here
section .bss

; put uninitialized data here

The bin format puts the.text section first in the file, so you can declare data or BSS items before
beginning to write code if you want to and the code will still end up at the front of the file where it belongs.

The BSS (uninitialized data) section does not take up space ircthefile itself: instead, addresses of BSS

items are resolved to point at space beyond the end of the file, on the grounds that this will be free memory
when the program is run. Therefore you should not rely on your BSS being initialized to all zeros when you
run.

To assemble the above program, you should use a command line like

nasm myprog.asm —fbin -o myprog.com

The bin format would produce a file calletlyprog if no explicit output file name were specified, so you
have to override it and give the desired file name.

8.2.2 Using theobj Format To Generate .CcoM Files

8.3

8.4

If you are writing a. COM program as more than one module, you may wish to assemble seveaafiles

and link them together into acoM program. You can do this, provided you have a linker capable of
outputting . coM files directly (TLINK does this), or alternatively a converter program sudxagBIN to
transform the. EXE file output from the linker into acoM file.

If you do this, you need to take care of several things:

e The first object file containing code should start its code segment with a linee#® 100h. This is to
ensure that the code begins at offsedh relative to the beginning of the code segment, so that the linker
or converter program does not have to adjust address references within the file when generatiog the
file. Other assemblers use amG directive for this purpose, bWiRG in NASM is a format-specific
directive to thebin output format, and does not mean the same thing as it does in MASM-compatible
assemblers.

* You don't need to define a stack segment.

« All your segments should be in the same group, so that every time your code or data references a symbol
offset, all offsets are relative to the same segment base. This is because,.wberfite is loaded, all the
segment registers contain the same value.

Producing. sYs Files

MS-DOS device drivers +sYs files — are pure binary files, similar tacoM files, except that they start at
origin zero rather tham00h. Therefore, if you are writing a device driver using thien format, you do not
need theoRG directive, since the default origin forin is zero. Similarly, if you are usingbj, you do not
need theRESB 100h at the start of your code segment.

.Sys files start with a header structure, containing pointers to the various routines inside the driver which do
the work. This structure should be defined at the start of the code segment, even though it is not actually code.

For more information on the format ofYs files, and the data which has to go in the header structure, a list
of books is given in the Frequently Asked Questions list for the newsgroup
comp.os.msdos.programmer.

Interfacing to 16—bit C Programs

This section covers the basics of writing assembly routines that call, or are called from, C programs. To do
this, you would typically write an assembly module ascaJ file, and link it with your C modules to
produce a mixed-language program.

8.4.1 External Symbol Names

C compilers have the convention that the names of all global symbols (functions or data) they define are

formed by prefixing an underscore to the name as it appears in the C program. So, for example, the function a
C programmer thinks of gsrint £ appears to an assembly language programmepasnt £. This means

that in your assembly programs, you can define symbols without a leading underscore, and not have to worry
about name clashes with C symbols.

If you find the underscores inconvenient, you can define macros to replaceE.¢iBal. and EXTERN
directives as follows:

105

news:comp.os.msdos.programmer

106

$macro cglobal 1

%$endmacro
$macro cextern 1

extern _%1
$define %1 _%1
$endmacro
(These forms of the macros only take one argument at a tisnesaconstruct could solve this.)
If you then declare an external like this:
cextern printf
then the macro will expand it as

extern _printf
$define printf _printf

Thereafter, you can referengerintf as if it was a symbol, and the preprocessor will put the leading
underscore on where necessary.

The cglobal macro works similarly. You must usgylobal before defining the symbol in question, but
you would have had to do that anyway if you usedBAL.

Also see section 2.1.27.

8.4.2 Memory Models

NASM contains no mechanism to support the various C memory models directly; you have to keep track
yourself of which one you are writing for. This means you have to keep track of the following things:

* In models using a single code segment (tiny, small and compact), functions are near. This means that
function pointers, when stored in data segments or pushed on the stack as function arguments, are 16 bits
long and contain only an offset field (ths register never changes its value, and always gives the segment
part of the full function address), and that functions are called using ordinarg xieRrinstructions and
return usingRETN (which, in NASM, is synonymous WItRET anyway). This means both that you should
write your own routines to return witkTN, and that you should call external C routines with maarL
instructions.

« In models using more than one code segment (medium, large and huge), functions are far. This means that
function pointers are 32 bits long (consisting of a 16-hit offset followed by a 16-bit segment), and that
functions are called usingALL FAR (or CALL seg:offset) and return usinRETF. Again, you
should therefore write your own routines to return \RHTF and usecALL FAR to call external routines.

« In models using a single data segment (tiny, small and medium), data pointers are 16 bits long, containing
only an offset field (th@s register doesn’t change its value, and always gives the segment part of the full
data item address).

In models using more than one data segment (compact, large and huge), data pointers are 32 bits long,
consisting of a 16-bit offset followed by a 16-bit segment. You should still be careful not to medify

your routines without restoring it afterwards, gt is free for you to use to access the contents of 32-hit

data pointers you are passed.

The huge memory model allows single data items to exceed 64K in size. In all other memory models, you
can access the whole of a data item just by doing arithmetic on the offset field of the pointer you are given,
whether a segment field is present or not; in huge model, you have to be more careful of your pointer
arithmetic.

In most memory models, there iglafaultdata segment, whose segment address is ket throughout

the program. This data segment is typically the same segment as the stack,skepdrthat functions’

local variables (which are stored on the stack) and global data items can both be accessed easily without
changingDs. Particularly large data items are typically stored in other segments. However, some memory
models (though not the standard ones, usually) allow the assumpti@s thatiDs hold the same value to

be removed. Be careful about functions’ local variables in this latter case.

In models with a single code segment, the segment is calledT, so your code segment must also go by
this name in order to be linked into the same place as the main code segment. In models with a single data
segment, or with a default data segment, it is caltedira.

8.4.3 Function Definitions and Function Calls

The C calling convention in 16-bit programs is as follows. In the following description, the eadketsand
calleeare used to denote the function doing the calling and the function which gets called.

The caller pushes the function’s parameters on the stack, one after another, in reverse order (right to left, so
that the first argument specified to the function is pushed last).

The caller then executesCaLL instruction to pass control to the callee. ThisLL is either near or far
depending on the memory model.

The callee receives control, and typically (although this is not actually necessary, in functions which do not
need to access their parameters) starts by saving the vaeeiroBp so as to be able to use as a base
pointer to find its parameters on the stack. However, the caller was probably doing this too, so part of the
calling convention states thap must be preserved by any C function. Hence the callee, if it is going to set
up BP as aframe pointey must push the previous value first.

The callee may then access its parameters relat®e.t®@he word at{BP] holds the previous value sb

as it was pushed; the next word,[@&P+2], holds the offset part of the return address, pushed implicitly

by cALL. In a small-model (near) function, the parameters start after thegpatd]; in a large—model

(far) function, the segment part of the return address livegBat-4], and the parameters begin at
[BP+6]. The leftmost parameter of the function, since it was pushed last, is accessible at this offset from
BP; the others follow, at successively greater offsets. Thus, in a function sgpehasf which takes a

variable number of parameters, the pushing of the parameters in reverse order means that the function
knows where to find its first parameter, which tells it the number and type of the remaining ones.

The callee may also wish to decreasefurther, so as to allocate space on the stack for local variables,
which will then be accessible at negative offsets fBam

The callee, if it wishes to return a value to the caller, should leave the vahk, iRX or DX:AX
depending on the size of the value. Floating—point results are sometimes (depending on the compiler)
returned insTO.

107

* Once the callee has finished processing, it restopeom BP if it had allocated local stack space, then
pops the previous value Bf, and returns VIi@ETN or RETEF depending on memory model.

« When the caller regains control from the callee, the function parameters are still on the stack, so it typically
adds an immediate constant $® to remove them (instead of executing a number of sk
instructions). Thus, if a function is accidentally called with the wrong number of parameters due to a
prototype mismatch, the stack will still be returned to a sensible state since the callerkivafnisnow
many parameters it pushed, does the removing.

It is instructive to compare this calling convention with that for Pascal programs (described in section 8.5.1).
Pascal has a simpler convention, since no functions have variable numbers of parameters. Therefore the callee
knows how many parameters it should have been passed, and is able to deallocate them from the stack itself
by passing an immediate argument toREE or RETF instruction, so the caller does not have to do it. Also,

the parameters are pushed in left-to—right order, not right-to-left, which means that a compiler can give
better guarantees about sequence points without performance suffering.

Thus, you would define a function in C style in the following way. The following example is for small model:

global _myfunc

_myfunc:
push bp
mov bp, sp
sub sp, 0x40 ; 64 bytes of local stack space
mov bx, [bp+4] ; first parameter to function
; some more code
mov sp, bp ; undo "sub sp,0x40" above
pop bp

ret

For a large—-model function, you would repla&®T by RETF, and look for the first parameter abp+6]

instead of[(BP+4]. Of course, if one of the parameters is a pointer, then the offsetbsfquenparameters

will change depending on the memory model as well: far pointers take up four bytes on the stack when passed
as a parameter, whereas near pointers take up two.

At the other end of the process, to call a C function from your assembly code, you would do something like
this:

extern _printf

; and then, further down...

push word [myint] ; one of my integer variables
push word mystring ; pointer into my data segment
call _printf

add sp,byte 4 ; ‘byte’ saves space

; then those data items...

segment _DATA

108

myint dw 1234
mystring db "This number -> %d <- should be 1234’,10,0

This piece of code is the small-model assembly equivalent of the C code

int myint = 1234;
printf ("This number —-> %$d <- should be 1234\n", myint);

In large model, the function—call code might look more like this. In this example, it is assumexb that
already holds the segment base of the segntemta. If not, you would have to initialize it first.

push word [myint]

push word seg mystring ; Now push the segment, and...
push word mystring ; ... offset of "mystring"
call far _printf

add sp,byte 6

The integer value still takes up one word on the stack, since large model does not affect the sizetof the

data type. The first argument (pushed lastptant £, however, is a data pointer, and therefore has to
contain a segment and offset part. The segment should be stored second in memory, and therefore must be
pushed first. (Of course, PUSH DS would have been a shorter instruction than

PUSH WORD SEG mystring, if DS was set up as the above example assumed.) Then the actual call
becomes a far call, since functions expect far calls in large modetrahds to be increased by 6 rather than

4 afterwards to make up for the extra word of parameters.

8.4.4 Accessing Data Items

To get at the contents of C variables, or to declare variables which C can access, you need only declare the
names as$LOBAL or EXTERN. (Again, the names require leading underscores, as stated in section 8.4.1.)
Thus, a C variable declared ast i can be accessed from assembler as

extern _1i

mov ax, [_i]

And to declare your own integer variable which C programs can accesstagn int 5, you do this
(making sure you are assembling in tlEATA segment, if necessary):

global _j

_J dw 0

To access a C array, you need to know the size of the components of the array. For exammeables

are two bytes long, so if a C program declares an arrayxasa[10], you can access[3] by coding

mov ax, [_a+6]. (The byte offset 6 is obtained by multiplying the desired array index, 3, by the size of the
array element, 2.) The sizes of the C base types in 16—bit compilers arethkiqr2 for short andint, 4

for long andfloat, and 8 fordouble.

To access a C data structure, you need to know the offset from the base of the structure to the field you are
interested in. You can either do this by converting the C structure definition into a NASM structure definition
(usingSTRUC), or by calculating the one offset and using just that.

109

110

8.4.5

To do either of these, you should read your C compiler's manual to find out how it organizes data structures.
NASM gives no special alignment to structure members in its ®IRUC macro, so you have to specify
alignment yourself if the C compiler generates it. Typically, you might find that a structure like

struct {

char c;

int i;
} foo;
might be four bytes long rather than three, sinceithe field would be aligned to a two—byte boundary.
However, this sort of feature tends to be a configurable option in the C compiler, either using command-line
options orfpragma lines, so you have to find out how your own compiler does it.

cl6.mac: Helper Macros for the 16-bit C Interface

Included in the NASM archives, in the sc directory, is a filec16 .mac of macros. It defines three macros:
proc, arg and endproc. These are intended to be used for C-style procedure definitions, and they
automate a lot of the work involved in keeping track of the calling convention.

(An alternative, TASM compatible form efrg is also now built into NASM'’s preprocessor. See section 4.8
for details.)

An example of an assembly function using the macro set is given here:

proc _nearproc
$$i arg
%S arg
mov ax, [bp + %$1i]
mov bx, [bp + %$$7]
add ax, [bx]
endproc

This defines nearproc to be a procedure taking two arguments, the firsta6 integer and the secong) (
a pointer to an integer. It returis + * 7.

Note that thearg macro has amQU as the first line of its expansion, and since the label before the macro call
gets prepended to the first line of the expanded macragtevorks, definings$i to be an offset fromsp.

A context-local variable is used, local to the context pushed byptlee= macro and popped by the
endproc macro, so that the same argument name can be used in later procedures. Of course, lyavedon’t
to do that.

The macro set produces code for near functions (tiny, small and compact-model code) by default. You can
have it generate far functions (medium, large and huge-model code) by means of coding
$define FARCODE. This changes the kind of return instruction generatedryproc, and also changes

the starting point for the argument offsets. The macro set contains no intrinsic dependency on whether data
pointers are far or not.

arg can take an optional parameter, giving the size of the argument. If no size is given, 2 is assumed, since it
is likely that many function parameters will be of tyjpet.

The large—-model equivalent of the above function would look like this:

$define FARCODE

proc _farproc

$$1i arg

%S arg 4
mov ax, [bp + %$1i]
mov bx, [bp + %$$7]
mov es, [bp + %$7 + 2]
add ax, [bx]

endproc

This makes use of the argument to they macro to define a parameter of size 4, becgusenow a far
pointer. When we load from, we must load a segment and an offset.

8.5 Interfacing to Borland Pascal Programs

Interfacing to Borland Pascal programs is similar in concept to interfacing to 16-bit C programs. The
differences are:

851 T

The leading underscore required for interfacing to C programs is not required for Pascal.

The memory model is always large: functions are far, data pointers are far, and no data item can be more
than 64K long. (Actually, some functions are near, but only those functions that are local to a Pascal unit
and never called from outside it. All assembly functions that Pascal calls, and all Pascal functions that
assembly routines are able to call, are far.) However, all static data declared in a Pascal program goes into
the default data segment, which is the one whose segment address wilideliren control is passed to

your assembly code. The only things that do not live in the default data segment are local variables (they
live in the stack segment) and dynamically allocated variables. Alpdaiters however, are far.

The function calling convention is different — described below.
Some data types, such as strings, are stored differently.

There are restrictions on the segment names you are allowed to use — Borland Pascal will ignore code or
data declared in a segment it doesn’t like the name of. The restrictions are described below.

he Pascal Calling Convention

The 16-bit Pascal calling convention is as follows. In the following description, the waltdsandcallee
are used to denote the function doing the calling and the function which gets called.

The caller pushes the function’s parameters on the stack, one after another, in normal order (left to right, so
that the first argument specified to the function is pushed first).

The caller then executes a L1 instruction to pass control to the callee.

The callee receives control, and typically (although this is not actually necessary, in functions which do not
need to access their parameters) starts by saving the vaeeiroBp so as to be able to use as a base
pointer to find its parameters on the stack. However, the caller was probably doing this too, so part of the
calling convention states thap must be preserved by any function. Hence the callee, if it is going to set
up BP as a frame pointer, must push the previous value first.

111

« The callee may then access its parameters relatise.tdhe word at{BP] holds the previous value 8P
as it was pushed. The next word,[aP+2], holds the offset part of the return address, and the next one at
[BP+4] the segment part. The parameters beginea+6]. The rightmost parameter of the function,
since it was pushed last, is accessible at this offset fbnthe others follow, at successively greater
offsets.

« The callee may also wish to decreasefurther, so as to allocate space on the stack for local variables,
which will then be accessible at negative offsets fBam

e The callee, if it wishes to return a value to the caller, should leave the valhmp, iRX or DX:AX
depending on the size of the value. Floating—point results are returr&tioinResults of typerReal
(Borland’'s own custom floating—point data type, not handled directly by the FPU) are returned in
DX:BX:AX. To return a result of typetring, the caller pushes a pointer to a temporary string before
pushing the parameters, and the callee places the returned string value at that location. The pointer is not a
parameter, and should not be removed from the stack IRethe instruction.

* Once the callee has finished processing, it restopeom BP if it had allocated local stack space, then
pops the previous value &P, and returns VieRETF. It uses the form oRETF with an immediate
parameter, giving the number of bytes taken up by the parameters on the stack. This causes the parameter:
to be removed from the stack as a side effect of the return instruction.

* When the caller regains control from the callee, the function parameters have already been removed from
the stack, so it needs to do nothing further.

Thus, you would define a function in Pascal style, taking tweeger—type parameters, in the following
way:

global myfunc

myfunc: push bp
mov bp, sp
sub sp, 0x40 ; 64 bytes of local stack space
mov bx, [bp+8] ; first parameter to function
mov bx, [bp+6] ; second parameter to function

; some more code

mov sp, bp ; undo "sub sp,0x40" above
pop bp
retf 4 ; total size of params is 4

At the other end of the process, to call a Pascal function from your assembly code, you would do something
like this:

extern SomeFunc

; and then, further down...

push word seg mystring ; Now push the segment, and...
push word mystring ; ... offset of "mystring"
push word [myint] ; one of my variables

call far SomeFunc

112

This is equivalent to the Pascal code

procedure SomeFunc (String: PChar;

SomeFunc (Emystring,

myint) ;

Int:

Integer);

8.5.2 Borland Pascal Segment Name Restrictions

Since Borland Pascal’s internal unit file format is completely different femu, it only makes a very
sketchy job of actually reading and understanding the various information contained iomJré when it

links that in. Therefore an object file intended to be linked to a Pascal program must obey a number of
restrictions:

« Procedures and functions must be in a segment whose name igeitlieiICSEG, or something ending in
_TEXT.

« initialized data must be in a segment whose name is €ithes T or something ending inDATA.
« Uninitialized data must be in a segment whose name is eiffex, DSEG, or something ending inBSS.

« Any other segments in the object file are completely igna@adup directives and segment attributes are
also ignored.

8.5.3 Usinge16.mac With Pascal Programs

Thec16.mac macro package, described in section 8.4.5, can also be used to simplify writing functions to be
called from Pascal programs, if you codiéefine PASCAL. This definition ensures that functions are far
(it impliesFARCODE), and also causes procedure return instructions to be generated with an operand.

Defining PASCAL does not change the code which calculates the argument offsets; you must declare your
function’s arguments in reverse order. For example:

$define PASCAL

proc _pascalproc

%S arg 4

$$i arg
mov ax, [bp + %$1i]
mov bx, [bp + %$$7]
mov es, [bp + %$7 + 2]
add ax, [bx]

endproc

This defines the same routine, conceptually, as the example in section 8.4.5: it defines a function taking two
arguments, an integer and a pointer to an integer, which returns the sum of the integer and the contents of the
pointer. The only difference between this code and the large-model C version P #iaatl. is defined

instead offARCODE, and that the arguments are declared in reverse order.

113

114

Chapter 9: Writing 32—-bit Code (Unix, Win32, DJGPP)

This chapter attempts to cover some of the common issues involved when writing 32-bit code, to run under
Win32 or Unix, or to be linked with C code generated by a Unix—style C compiler such as DJGPP. It covers
how to write assembly code to interface with 32-hit C routines, and how to write position-independent code
for shared libraries.

Almost all 32-bit code, and in particular all code running undefi32, DJGPP or any of the PC Unix

variants, runs iflat memory model. This means that the segment registers and paging have already been set
up to give you the same 32-bit 4Gb address space no matter what segment you work relative to, and that you
should ignore all segment registers completely. When writing flat—-model application code, you never need to
use a segment override or modify any segment register, and the code—section addresses yonipgaasdo

JMP live in the same address space as the data—section addresses you access your variables by and th
stack—section addresses you access local variables and procedure parameters by. Every address is 32 bits lon
and contains only an offset part.

9.1 Interfacing to 32-bit C Programs

A lot of the discussion in section 8.4, about interfacing to 16-bit C programs, still applies when working in 32
bits. The absence of memory models or segmentation worries simplifies things a lot.

9.1.1 External Symbol Names

Most 32-hit C compilers share the convention used by 16-bit compilers, that the names of all global symbols
(functions or data) they define are formed by prefixing an underscore to the name as it appears in the C
program. However, not all of them do: tReF specification states that C symbols mim have a leading
underscore on their assembly—language names.

The older Linuxa.out C compiler, allwWin32 compilers,DJGPP, andNetBSD andFreeBSD, all use the
leading underscore; for these compilers, the macessern andcglobal, as given in section 8.4.1, will
still work. ForeLF, though, the leading underscore should not be used.

See also section 2.1.27.

9.1.2 Function Definitions and Function Calls

The C calling convention in 32-bit programs is as follows. In the following description, the eadietsand
calleeare used to denote the function doing the calling and the function which gets called.

« The caller pushes the function’s parameters on the stack, one after another, in reverse order (right to left, so
that the first argument specified to the function is pushed last).

« The caller then executes a nearLL instruction to pass control to the callee.

« The callee receives control, and typically (although this is not actually necessary, in functions which do not
need to access their parameters) starts by saving the valg® af EBP so as to be able to usap as a
base pointer to find its parameters on the stack. However, the caller was probably doing this too, so part of
the calling convention states ttesp must be preserved by any C function. Hence the callee, if it is going
to set uEBP as a frame pointer, must push the previous value first.

« The callee may then access its parameters relatige®ro The doubleword atEBP] holds the previous
value of EBP as it was pushed; the next doubleword,[BBP+4], holds the return address, pushed
implicitly by cALL. The parameters start after that,/aBpr+8]. The leftmost parameter of the function,
since it was pushed last, is accessible at this offset fiem the others follow, at successively greater
offsets. Thus, in a function such psint £ which takes a variable number of parameters, the pushing of
the parameters in reverse order means that the function knows where to find its first parameter, which tells
it the number and type of the remaining ones.

« The callee may also wish to decreas® further, so as to allocate space on the stack for local variables,
which will then be accessible at negative offsets frEBnR.

e The callee, if it wishes to return a value to the caller, should leave the valne ax or EAX depending
on the size of the value. Floating—point results are typically returngddn

« Once the callee has finished processing, it reskgesfrom EBP if it had allocated local stack space, then
pops the previous value B8P, and returns Vi@ET (equivalently RETN).

« When the caller regains control from the callee, the function parameters are still on the stack, so it typically
adds an immediate constant #5P to remove them (instead of executing a number of stow
instructions). Thus, if a function is accidentally called with the wrong number of parameters due to a
prototype mismatch, the stack will still be returned to a sensible state since the callerkivafnisnow
many parameters it pushed, does the removing.

There is an alternative calling convention used by Win32 programs for Windows API calls, and also for
functions calledby the Windows APl such as window procedures: they follow what Microsoft calls the
__stdcall convention. This is slightly closer to the Pascal convention, in that the callee clears the stack by
passing a parameter to tRET instruction. However, the parameters are still pushed in right-to-left order.

Thus, you would define a function in C style in the following way:

global _myfunc

_myfunc:
push ebp
mov ebp, esp
sub esp, 0x40 ; 64 bytes of local stack space
mov ebx, [ebp+8] ; first parameter to function

; some more code

leave ; mov esp,ebp / pop ebp
ret

At the other end of the process, to call a C function from your assembly code, you would do something like
this:

extern _printf

; and then, further down...

push dword [myint] ; one of my integer variables
push dword mystring ; pointer into my data segment
call _printf

115

116

add esp,byte 8 ; ‘byte’ saves space
; then those data items...
segment _DATA

myint dd 1234
mystring db "This number -> %d <- should be 1234’,10,0
This piece of code is the assembly equivalent of the C code

int myint = 1234;
printf ("This number —-> %$d <- should be 1234\n", myint);

9.1.3 Accessing Data Items

To get at the contents of C variables, or to declare variables which C can access, you need only declare the
names as$LOBAL or EXTERN. (Again, the names require leading underscores, as stated in section 9.1.1.)
Thus, a C variable declared ast i can be accessed from assembler as

extern _1i
mov eax, [_1i]

And to declare your own integer variable which C programs can accesstagn int 5, you do this
(making sure you are assembling in tliEATA segment, if necessary):

global _j
3 dd 0

To access a C array, you need to know the size of the components of the array. For exammeables

are four bytes long, so if a C program declares an arrayhesa[10], you can access[3] by coding

mov ax, [_a+12]. (The byte offset 12 is obtained by multiplying the desired array index, 3, by the size of
the array element, 4.) The sizes of the C base types in 32—bit compilers arehkfor2 for short, 4 for

int, long andfloat, and 8 fordouble. Pointers, being 32-bit addresses, are also 4 bytes long.

To access a C data structure, you need to know the offset from the base of the structure to the field you are
interested in. You can either do this by converting the C structure definition into a NASM structure definition
(usingSTRUC), or by calculating the one offset and using just that.

To do either of these, you should read your C compiler's manual to find out how it organizes data structures.
NASM gives no special alignment to structure members in its ®IRUC macro, so you have to specify
alignment yourself if the C compiler generates it. Typically, you might find that a structure like

struct {

char c;

int i;
} foo;
might be eight bytes long rather than five, since the field would be aligned to a four—byte boundary.
However, this sort of feature is sometimes a configurable option in the C compiler, either using
command-line options drpragma lines, so you have to find out how your own compiler does it.

9.1.4 ¢32.mac: Helper Macros for the 32-bit C Interface

Included in the NASM archives, in the sc directory, is a filec32 . mac of macros. It defines three macros:
proc, arg and endproc. These are intended to be used for C-style procedure definitions, and they
automate a lot of the work involved in keeping track of the calling convention.

An example of an assembly function using the macro set is given here:

proc _proc32

$$i arg

%S arg
mov eax, [ebp + %$1i]
mov ebx, [ebp + %$7]
add eax, [ebx]

endproc

This defines proc32 to be a procedure taking two arguments, the firstaf integer and the secong)) @
pointer to an integer. It returds + *.

Note that thearg macro has arQU as the first line of its expansion, and since the label before the macro call
gets prepended to the first line of the expanded macr@gtevorks, definings$i to be an offset fromsp.

A context-local variable is used, local to the context pushed byptlee= macro and popped by the
endproc macro, so that the same argument name can be used in later procedures. Of course, lyavedon’t
to do that.

arg can take an optional parameter, giving the size of the argument. If no size is given, 4 is assumed, since it
is likely that many function parameters will be of tyipet or pointers.

9.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries

ELF replaced the oldera.out object file format under Linux because it contains support for
position—-independent code (PIC), which makes writing shared libraries much easier. NASM supparis the
position—-independent code features, so you can write lHmaxshared libraries in NASM.

NetBSD, and its close cousins FreeBSD and OpenBSD, take a different approach by hacking PIC support into
thea.out format. NASM supports this as th@utb output format, so you can write BSD shared libraries
in NASM too.

The operating system loads a PIC shared library by memory—mapping the library file at an arbitrarily chosen
point in the address space of the running process. The contents of the library’s code section must therefore not
depend on where it is loaded in memory.

Therefore, you cannot get at your variables by writing code like this:
mov eax, [myvar] ; WRONG

Instead, the linker provides an area of memory calledlttzal offset tableor GOT; the GOT is situated at a
constant distance from your library’s code, so if you can find out where your library is loaded (which is
typically done using a2LL andPOP combination), you can obtain the address of the GOT, and you can then
load the addresses of your variables out of linker—generated entries in the GOT.

The data section of a PIC shared library does not have these restrictions: since the data section is writable, it
has to be copied into memory anyway rather than just paged in from the library file, so as long as it's being

117

118

copied it can be relocated too. So you can put ordinary types of relocation in the data section without too
much worry (but see section 9.2.4 for a caveat).

9.2.1 Obtaining the Address of the GOT

Each code module in your shared library should define the GOT as an external symbol:

extern _GLOBAL_OFFSET_TABLE_ ; in ELF
extern _ GLOBAL_OFFSET_TABLE_ ; in BSD a.out

At the beginning of any function in your shared library which plans to access your data or BSS sections, you
must first calculate the address of the GOT. This is typically done by writing the function in this form:

func: push ebp
mov ebp, esp
push ebx
call .get_GOT
.get_GOT:
pop ebx
add ebx, _GLOBAL_OFFSET_TABLE_+$$-.get_GOT wrt ..gotpc

; the function body comes here

mov ebx, [ebp-4]
mov esp, ebp
pop ebp

ret

(For BSD, again, the symboGLOBAL_OFFSET_TABLE requires a second leading underscore.)

The first two lines of this function are simply the standard C prologue to set up a stack frame, and the last
three lines are standard C function epilogue. The third line, and the fourth to last line, save and restore the
EBX register, because PIC shared libraries use this register to store the address of the GOT.

The interesting bit is theALL instruction and the following two lines. TleALL and POP combination
obtains the address of the labelet_GoT, without having to know in advance where the program was
loaded (since theALL instruction is encoded relative to the current position). Alihe instruction makes use

of one of the special PIC relocation types: GOTPC relocation. Withiahe . . gotpc qualifier specified,

the symbol referenced (her&L.OBAL_OFFSET_TABLE_, the special symbol assigned to the GOT) is given
as an offset from the beginning of the section. (Actuallyg encodes it as the offset from the operand field
of the ADD instruction, but NASM simplifies this deliberately, so you do things the same way foEbbth
andBSD.) So the instruction theaddsthe beginning of the section, to get the real address of the GOT, and
subtracts the value ofget_GOT which it knows is InEBX. Therefore, by the time that instruction has
finished,EBX contains the address of the GOT.

If you didn’t follow that, don’t worry: it's never necessary to obtain the address of the GOT by any other
means, so you can put those three instructions into a macro and safely ignore them:

$macro get_GOT O

call $%getgot
$%getgot:
pop ebx
add ebx, _GLOBAL_OFFSET_TABLE_+$$-%%getgot wrt ..gotpc

%$endmacro

9.2.2 Finding Your Local Data Items

Having got the GOT, you can then use it to obtain the addresses of your data items. Most variables will reside
in the sections you have declared; they can be accessed usingsthieo £ £ specialWRT type. The way this
works is like this:

lea eax, [ebx+myvar wrt ..gotoff]

The expressiomyvar wrt ..gotoff is calculated, when the shared library is linked, to be the offset to
the local variablenyvar from the beginning of the GOT. Therefore, adding E#x as above will place the
real address afiyvar in EAX.

If you declare variables as.0BAL without specifying a size for them, they are shared between code modules

in the library, but do not get exported from the library to the program that loaded it. They will still be in your
ordinary data and BSS sections, so you can access them in the same way as local variables, using the abov:
. .gotoff mechanism.

Note that due to a peculiarity of the way BSDout format handles this relocation type, there must be at
least one non-local symbol in the same section as the address you're trying to access.

9.2.3 Finding External and Common Data Items

If your library needs to get at an external variable (external tdiitey, not just to one of the modules
within it), you must use the . got type to get at it. The . got type, instead of giving you the offset from
the GOT base to the variable, gives you the offset from the GOT base to arf@@dontaining the address

of the variable. The linker will set up this GOT entry when it builds the library, and the dynamic linker will
place the correct address in it at load time. So to obtain the address of an external asatiable in EAX,

you would code

mov eax, [ebx+extvar wrt ..got]

This loads the address ektvar out of an entry in the GOT. The linker, when it builds the shared library,
collects together every relocation of typegot, and builds the GOT so as to ensure it has every necessary
entry present.

Common variables must also be accessed in this way.

9.2.4 Exporting Symbols to the Library User

If you want to export symbols to the user of the library, you have to declare whether they are functions or
data, and if they are data, you have to give the size of the data item. This is because the dynamic linker has to
build procedure linkage table entries for any exported functions, and also moves exported data items away
from the library’s data section in which they were declared.

So to export a function to users of the library, you must use

global func:function ; declare it as a function
func: push ebp
; etc.

And to export a data item such as an array, you would have to code

119

120

global array:data array.end-array ; give the size too
array: resd 128
.end:

Be careful: If you export a variable to the library user, by declaring @.a®a1L and supplying a size, the
variable will end up living in the data section of the main program, rather than in your library’s data section,
where you declared it. So you will have to access your own global variable with glae& mechanism rather
than. .gotof£, as if it were external (which, effectively, it has become).

Equally, if you need to store the address of an exported global in one of your data sections, you can’t do it by
means of the standard sort of code:

dataptr: dd global_data_item ; WRONG

NASM will interpret this code as an ordinary relocation, in whitlbbal_data_item is merely an offset
from the beginning of thedata section (or whatever); so this reference will end up pointing at your data
section instead of at the exported global which resides elsewhere.

Instead of the above code, then, you must write
dataptr: dd global_data_item wrt ..sym

which makes use of the spedi@T type . . sym to instruct NASM to search the symbol table for a particular
symbol at that address, rather than just relocating by section base.

Either method will work for functions: referring to one of your functions by means of
funcptr: dd my_function

will give the user the address of the code you wrote, whereas

funcptr: dd my_function wrt ..sym

will give the address of the procedure linkage table for the function, which is where the calling program will
believethe function lives. Either address is a valid way to call the function.

9.2.5 Calling Procedures Outside the Library

Calling procedures outside your shared library has to be done by meaprooédure linkage tabjeor PLT.

The PLT is placed at a known offset from where the library is loaded, so the library code can make calls to the
PLT in a position—independent way. Within the PLT there is code to jump to offsets contained in the GOT, so
function calls to other shared libraries or to routines in the main program can be transparently passed off to
their real destinations.

To call an external routine, you must use another special PIC relocatiomifype,. .plt. This is much
easier than the GOT-based ones: you simply replace calls suw#iLas print £ with the PLT-relative
VEersionCALL printf WRT ..plt.

9.2.6 Generating the Library File

Having written some code modules and assembled them files, you then generate your shared library
with a command such as

1ld -shared -o library.so modulel.o module2.o # for ELF
1d -Bshareable -o library.so modulel.o module2.o # for BSD

For ELF, if your shared library is going to reside in system directories su¢hsas/1ib or /1ib, it is
usually worth using the-soname flag to the linker, to store the final library file name, with a version
number, into the library:

1ld -shared -soname library.so.l -o library.so.l.2 *.o

You would then copylibrary.so.1.2 into the library directory, and createibrary.so.1 as a
symbolic link to it.

121

122

Chapter 10: Mixing 16 and 32 Bit Code

This chapter tries to cover some of the issues, largely related to unusual forms of addressing and jump
instructions, encountered when writing operating system code such as protected—mode initialisation routines,
which require code that operates in mixed segment sizes, such as code in a 16-bit segment trying to modify
data in a 32-hit one, or jumps between different-size segments.

10.1 Mixed-Size Jumps

The most common form of mixed-size instruction is the one used when writing a 32-bit OS: having done
your setup in 16-bit mode, such as loading the kernel, you then have to boot it by switching into protected
mode and jumping to the 32-bit kernel start address. In a fully 32—bit OS, this tends tohly thixed-size
instruction you need, since everything before it can be done in pure 16-bit code, and everything after it can be
pure 32-bit.

This jump must specify a 48-bit far address, since the target segment is a 32-bit one. However, it must be
assembled in a 16-bit segment, so just coding, for example,

Jjmp 0x1234:0x56789ABC ; wrong!

will not work, since the offset part of the address will be truncatetix@rec and the jump will be an
ordinary 16-bit far one.

The Linux kernel setup code gets round the inabilitgy ©8 6 to generate the required instruction by coding it
manually, usingDB instructions. NASM can go one better than that, by actually generating the right
instruction itself. Here’s how to do it right:

Jjmp dword 0x1234:0x56789ABRC ; right

TheDWORD prefix (strictly speaking, it should conaéter the colon, since it is declaring thésetfield to be a
doubleword; but NASM will accept either form, since both are unambiguous) forces the offset part to be
treated as far, in the assumption that you are deliberately writing a jump from a 16-bit segment to a 32-hit
one.

You can do the reverse operation, jumping from a 32-bit segment to a 16-bit one, by meangosibthe
prefix:

Jjmp word 0x8765:0x4321 ; 32 to 16 bit

If the WORD prefix is specified in 16—bit mode, or tm&ORD prefix in 32-bit mode, they will be ignored,
since each is explicitly forcing NASM into a mode it was in anyway.

10.2 Addressing Between Different-Size Segments

If your OS is mixed 16 and 32-bit, or if you are writing a DOS extender, you are likely to have to deal with
some 16-bit segments and some 32-bit ones. At some point, you will probably end up writing code in a
16-bit segment which has to access data in a 32-bit segment, or vice versa.

If the data you are trying to access in a 32-bit segment lies within the first 64K of the segment, you may be
able to get away with using an ordinary 16-bit addressing operation for the purpose; but sooner or later, you
will want to do 32-bit addressing from 16—bit mode.

The easiest way to do this is to make sure you use a register for the address, since any effective address
containing a 32-bit register is forced to be a 32-bit address. So you can do

mov eax,offset_into_32_bit_segment_specified_by_fs
mov dword [fs:eax],0x11223344

This is fine, but slightly cumbersome (since it wastes an instruction and a register) if you already know the
precise offset you are aiming at. The x86 architecture does allow 32-hit effective addresses to specify nothing
but a 4-byte offset, so why shouldn't NASM be able to generate the best instruction for the purpose?

It can. As in section 10.1, you need only prefix the address withitheDd keyword, and it will be forced to
be a 32-bit address:

mov dword [fs:dword my_offset],0x11223344

Also as in section 10.1, NASM is not fussy about whetherDtheRD prefix comes before or after the
segment override, so arguably a nicer-looking way to code the above instruction is

mov dword [dword fs:my_offset],0x11223344

Don't confuse theWORD prefix outsidethe square brackets, which controls the size of the data stored at the
address, with the oninside the square brackets which controls the length of the address itself. The two can
quite easily be different:

mov word [dword 0x12345678], 0x9ABC
This moves 16 bits of data to an address specified by a 32-bit offset.

You can also speciffORD or DWORD prefixes along with th&@aR prefix to indirect far jumps or calls. For
example:

call dword far [fs:word 0x4321]

This instruction contains an address specified by a 16-bit offset; it loads a 48-bit far pointer from that (16-bit
segment and 32-bit offset), and calls that address.

10.3 Other Mixed-Size Instructions

The other way you might want to access data might be using the string instructios(STOSx and so
on) or theXLATB instruction. These instructions, since they take no parameters, might seem to have no easy
way to make them perform 32-bit addressing when assembled in a 16—bit segment.

This is the purpose of NASM’'s16, a32 andaé64 prefixes. If you are codingoODSB in a 16—bit segment
but it is supposed to be accessing a string in a 32—-bit segment, you should load the desired adelsass into
and then code

a32 lodsb

The prefix forces the addressing size to 32 bits, meaningLtbmtB loads from [DS:ESI] instead of
[DS:SI]. To access a string in a 16-bit segment when coding in a 32-bit one, the correspamsdimgfix
can be used.

Theal6, a32 anda64 prefixes can be applied to any instruction in NASM's instruction table, but most of
them can generate all the useful forms without them. The prefixes are necessary only for instructions with
implicit addressingcMPSx, SCASx, LODSx, STOSx, MOVSx, INSx, OUTSx, andxLATB. Also, the various

push and pop instructionsi{SHA andPOPF as well as the more usualSH andPOP) can accephl6, a32

123

124

or a64 prefixes to force a particular one &P, ESP or RSP to be used as a stack pointer, in case the stack
segment in use is a different size from the code segment.

PUSH andPoP, when applied to segment registers in 32-bit mode, also have the slightly odd behaviour that
they push and pop 4 bytes at a time, of which the top two are ignored and the bottom two give the value of the
segment register being manipulated. To force the 16-bit behaviour of segment-register push and pop
instructions, you can use the operand-size prefig:

ol6 push Ss
ol6 push ds

This code saves a doubleword of stack space by fitting two segment registers into the space which would
normally be consumed by pushing one.

(You can also use the32 prefix to force the 32-bit behaviour when in 16-bit mode, but this seems less
useful.)

Chapter 11: Writing 64—bit Code (Unix, Win64)

This chapter attempts to cover some of the common issues involved when writing 64-bit code, to run under
Win64 or Unix. It covers how to write assembly code to interface with 64-hit C routines, and how to write
position—-independent code for shared libraries.

All 64-bit code uses a flat memory model, since segmentation is not available in 64-bit mode. The one
exception is th&'s andGs registers, which still add their bases.

Position independence in 64-bit mode is significantly simpler, since the processor seapertslative
addressing directly; see tR&1. keyword (section 3.3). On most 64-bit platforms, it is probably desirable to
make that the default, using the directhb&FAULT REL (section 6.2).

64-bit programming is relatively similar to 32-bit programming, but of course pointers are 64 bits long;
additionally, all existing platforms pass arguments in registers rather than on the stack. Furthermore, 64-bit
platforms use SSE2 by default for floating point. Please see the ABI documentation for your platform.

64-hit platforms differ in the sizes of the fundamental datatypes, not just from 32-bit platforms but from each
other. If a specific size data type is desired, it is probably best to use the types defined in the Standard C
headexinttypes.h>.

In 64-bit mode, the default instruction size is still 32 bits. When loading a value into a 32-bit register (but not
an 8- or 16-bit register), the upper 32 bits of the corresponding 64-bit register are set to zero.

11.1 Register Names in 64-bit Mode

NASM uses the following names for general-purpose registers in 64-bit mode, for 8-, 16—, 32— and 64-hit
references, respectively:

AL/AH, CL/CH, DL/DH, BL/BH, SPL, BPL, SIL, DIL, R8B-R15B
AX, CX, DX, BX, SP, BP, SI, DI, R8W-R15W

EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, R8D-R15D

RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8-R15

This is consistent with the AMD documentation and most other assemblers. The Intel documentation,
however, uses the namrsL-R15L for 8-bit references to the higher registers. It is possible to use those
names by definiting them as macros; similarly, if one wants to use numeric names for the low 8 registers,
define them as macros. The standard macro packeigeeg (see section 5.1) can be used for this purpose.

11.2 Immediates and Displacements in 64—bit Mode

In 64-bit mode, immediates and displacements are generally only 32 bits wide. NASM will therefore truncate
most displacements and immediates to 32 bits.

The only instruction which takes a full 64-bit immediate is:
MOV reg64, immé64

NASM will produce this instruction whenever the programmer wges with an immediate into a 64-bit
register. If this is not desirable, simply specify the equivalent 32-hit register, which will be automatically
zero—extended by the processor, or specify the immediateGrD:

125

126

mov rax, foo ; 64-bit immediate

mov rax,qword foo ; (identical)
mov eax, foo ; 32-bit immediate, zero—-extended
mov rax,dword foo ; 32-bit immediate, sign-extended

The length of these instructions are 10, 5 and 7 bytes, respectively.

The only instructions which take a full 64-kisplacements loading or storing, usingov, AL, AX, EAX Or

RAX (but no other registers) to an absolute 64-bit address. Since this is a relatively rarely used instruction
(64-bit code generally uses relative addressing), the programmer has to explicitly declare the displacement
size aDWORD:

default abs

mov eax, [foo] ; 32-bit absolute disp, sign-extended
mov eax, [a32 foo] ; 32-bit absolute disp, zero—-extended
mov eax, [gqword foo] ; 64-bit absolute disp

default rel

mov eax, [foo] ; 32-bit relative disp
mov eax, [a32 foo] ; d:o, address truncated to 32 bits(!)
mov eax, [gqword foo] ; error

[

mov eax, [abs gword foo] ; 64-bit absolute disp

A sign—extended absolute displacement can access from -2 GB to +2 GB; a zero—extended absolute
displacement can access from 0 to 4 GB.

11.3 Interfacing to 64-bit C Programs (Unix)

On Unix, the 64-bit ABI is defined by the document:
http://www.nasm.us/links/unix64abi

Although written for AT&T-syntax assembly, the concepts apply equally well for NASM-style assembly.
What follows is a simplified summary.

The first six integer arguments (from the left) are pass&bin RSI, RDX, RCX, R8, andR?9, in that order.
Additional integer arguments are passed on the stack. These registers\:plgs 0 andr11 are destroyed
by function calls, and thus are available for use by the function without saving.

Integer return values are passe®ix andRDX, in that order.

Floating point is done using SSE registers, exceplfarg double. Floating—point arguments are passed
in XMMO to XMM7; return isxMM0 andXMM1. long double are passed on the stack, and returnesirio
andsT1.

All SSE and x87 registers are destroyed by function calls.

On 64-bit Unix,1ong is 64 bits.

Integer and SSE register arguments are counted separately, so for the case of
void foo(long a, double b, int c)

ais passed iRDI, b in XMMO, andc in EST.

http://www.nasm.us/links/unix64abi

11.4 Interfacing to 64-bit C Programs (Win64)
The Win64 ABI is described at:
http://www.nasm.us/links/winé64abi
What follows is a simplified summary.

The first four integer arguments are passedk@x, RDX, R8 and R9, in that order. Additional integer
arguments are passed on the stack. These register&ydug10 andr11 are destroyed by function calls,
and thus are available for use by the function without saving.

Integer return values are passe®ix only.

Floating point is done using SSE registers, exceplLfarg double. Floating—point arguments are passed
in XMMO to XMM3; return isxMMO only.

On Win64,1long is 32 bits;long long or_int64 is 64 bits.
Integer and SSE register arguments are counted together, so for the case of
void foo(long long a, double b, int c)

a is passed IRCX, b in XMM1, andc in R8D.

127

http://www.nasm.us/links/win64abi

Chapter 12: Troubleshooting

This chapter describes some of the common problems that users have been known to encounter with NASM,
and answers them. It also gives instructions for reporting bugs in NASM if you find a difficulty that isn't
listed here.

12.1 Common Problems

12.1.1 NASM Generates Inefficient Code

We sometimes get ‘bug’ reports about NASM generating inefficient, or even ‘wrong’, code on instructions
such asaDD ESP, 8. This is a deliberate design feature, connected to predictability of output: NASM, on
seeingADD ESP, 8, will generate the form of the instruction which leaves room for a 32-bit offset. You
need to codeDD ESP,BYTE 8 if you want the space—efficient form of the instruction. This isn't a bug, it's
user error: if you prefer to have NASM produce the more efficient code automatically enable optimization
with the-0 option (see section 2.1.22).

12.1.2 My Jumps are Out of Range

Similarly, people complain that when they issue conditional jumps (whicerHEYRT by default) that try to
jump too far, NASM reports ‘short jump out of range’ instead of making the jumps longer.

This, again, is partly a predictability issue, but in fact has a more practical reason as well. NASM has no
means of being told what type of processor the code it is generating will be run on; so it cannot decide for
itself that it should generatecc NEAR type instructions, because it doesn’t know that it's working for a 386

or above. Alternatively, it could replace the out-of-range shomt instruction with a very shorte
instruction that jumps over aMP NEAR; this is a sensible solution for processors below a 386, but hardly
efficient on processors which have good branch predietmitould have usedNE NEAR instead. So, once

again, it's up to the user, not the assembler, to decide what instructions should be generated. See section
2.1.22.

12.1.3 orRG Doesn’t Work

128

People writing boot sector programs in thien format often complain thaiRG doesn’t work the way they’d
like: in order to place thexaa55 signature word at the end of a 512-byte boot sector, people who are used
to MASM tend to code

ORG 0
; some boot sector code

ORG 510
DW OxAA55

This is not the intended use of thac directive in NASM, and will not work. The correct way to solve this
problem in NASM is to use theIMES directive, like this:

ORG O

; some boot sector code

TIMES 510-($-$$) DB O
DW OxAA55

The TIMES directive will insert exactly enough zero bytes into the output to move the assembly point up to
510. This method also has the advantage that if you accidentally fill your boot sector too full, NASM will
catch the problem at assembly time and report it, so you won't end up with a boot sector that you have to
disassemble to find out what's wrong with it.

12.1.4 TIMES Doesn’t Work
The other common problem with the above code is people who writa &S line as
TIMES 510-$ DB 0

by reasoning tha$ should be a pure number, just like 510, so the difference between them is also a pure
number and can happily be fedtoMES.

NASM is amodularassembler: the various component parts are designed to be easily separable for re-use, so
they don't exchange information unnecessarily. In consequence,ith@utput format, even though it has

been told by theRa directive that the text section should start at 0, does not pass that information back to
the expression evaluator. So from the evaluator’'s point of \geisn't a pure number: it's an offset from a
section base. Therefore the difference betwgemd 510 is also not a pure number, but involves a section
base. Values involving section bases cannot be passed as argurmams3o

The solution, as in the previous section, is to code itz S line in the form
TIMES 510-($-$$) DB 0

in which $ and$$ are offsets from the same section base, and so their difference is a pure number. This will
solve the problem and generate sensible code.

12.2 Bugs

We have never yet released a version of NASM withkarownbugs. That doesn’t usually stop there being
plenty we didn’'t know about, though. Any that you find should be reported firstly viauberacker at
http://www.nasm.us/ (click on "Bug Tracker"), or if that fails then through one of the contacts in
section 1.2.

Please read section 2.2 first, and don’t report the bug if it's listed in there as a deliberate feature. (If you think
the feature is badly thought out, feel free to send us reasons why you think it should be changed, but don't just
send us mail saying ‘This is a bug’ if the documentation says we did it on purpose.) Then read section 12.1,
and don’t bother reporting the bug if it's listed there.

If you do report a bugpleasegive us all of the following information:

« What operating system you’re running NASM under. DOS, Linux, NetBSD, Win16, Win32, VMS (I'd be
impressed), whatever.

e If you're running NASM under DOS or Win32, tell us whether you've compiled your own executable from
the DOS source archive, or whether you were using the standard distribution binaries out of the archive. If
you were using a locally built executable, try to reproduce the problem using one of the standard binaries,
as this will make it easier for us to reproduce your problem prior to fixing it.

129

http://www.nasm.us/

130

Which version of NASM you're using, and exactly how you invoked it. Give us the precise command line,
and the contents of thea SMENV environment variable if any.

Which versions of any supplementary programs you'’re using, and how you invoked them. If the problem
only becomes visible at link time, tell us what linker you're using, what version of it you've got, and the

exact linker command line. If the problem involves linking against object files generated by a compiler, tell
us what compiler, what version, and what command line or options you used. (If you're compiling in an
IDE, please try to reproduce the problem with the command-line version of the compiler.)

If at all possible, send us a NASM source file which exhibits the problem. If this causes copyright
problems (e.g. you can only reproduce the bug in restricted—distribution code) then bear in mind the
following two points: firstly, we guarantee that any source code sent to us for the purposes of debugging
NASM will be usedonly for the purposes of debugging NASM, and that we will delete all our copies of it
as soon as we have found and fixed the bug or bugs in question; and secondly, we wouhdttefes

mailed large chunks of code anyway. The smaller the file, the better. A three-line sample file that does
nothing usefulexcept demonstrate the problem is much easier to work with than a fully fledged
ten—thousand-line program. (Of course, some emorsnly crop up in large files, so this may not be
possible.)

A description of what the problem actuaidy ‘It doesn’t work’ isnot a helpful description! Please describe
exactly what is happening that shouldn’t be, or what isn't happening that should. Examples might be:
‘NASM generates an error message saying Line 3 for an error that's actually on Line 5’; ‘'NASM generates
an error message that | believe it shouldn’t be generating at all’; ‘NASM fails to generate an error message
that | believe itshouldbe generating’; ‘the object file produced from this source code crashes my linker’;
‘the ninth byte of the output file is 66 and | think it should be 77 instead'.

If you believe the output file from NASM to be faulty, send it to us. That allows us to determine whether
our own copy of NASM generates the same file, or whether the problem is related to portability issues
between our development platforms and yours. We can handle binary files mailed to us as MIME
attachments, uuencoded, and even BinHex. Alternatively, we may be able to provide an FTP site you can
upload the suspect files to; but mailing them is easier for us.

Any other information or data files that might be helpful. If, for example, the problem involves NASM
failing to generate an object file while TASM can generate an equivalent file without trouble, then send us
bothobject files, so we can see what TASM is doing differently from us.

Appendix A: Ndisasm

The Netwide Disassembler, NDISASM

A.1 Introduction

The Netwide Disassembler is a small companion program to the Netwide Assembler, NASM. It seemed a
shame to have an x86 assembler, complete with a full instruction table, and not make as much use of it as
possible, so here’s a disassembler which shares the instruction table (and some other bits of code) with NASM.

The Netwide Disassembler does nothing except to produce disassemilirargfsource files. NDISASM
does not have any understanding of object file formatsplikiedump, and it will not understandos .EXE
files like debug will. It just disassembles.

A.2 Getting Started: Installation

See section 1.3 for installation instructions. NDISASM, like NASM, haam@a page which you may want
to put somewhere useful, if you are on a Unix system.

A.3 Running NDISASM
To disassemble a file, you will typically use a command of the form
ndisasm -b {16|32|64} filename

NDISASM can disassemble 16—, 32— or 64-bit code equally easily, provided of course that you remember to
specify which it is to work with. If ne-b switch is present, NDISASM works in 16—bit mode by default. The
—u switch (for USE32) also invokes 32-bit mode.

Two more command line options are which reports the version number of NDISASM you are running, and
—h which gives a short summary of command line options.

A.3.1 COM Files: Specifying an Origin

To disassemble mos .coM file correctly, a disassembler must assume that the first instruction in the file is
loaded at address<100, rather than at zero. NDISASM, which assumes by default that any file you give it is
loaded at zero, will therefore need to be informed of this.

The -o option allows you to declare a different origin for the file you are disassembling. Its argument may be
expressed in any of the NASM numeric formats: decimal by default, if it begins stithr *0x’ or ends in
‘H'it's hex, ifitends in Q' it's octal, and if it ends inB’ it's binary.

Hence, to disassemble.aoM file:
ndisasm —-0100h filename.com

will do the trick.

131

A.3.2 Code Following Data: Synchronisation

Suppose you are disassembling a file which contains some data which isn't machine cdtluen ematains

some machine code. NDISASM will faithfully plough through the data section, producing machine
instructions wherever it can (although most of them will look bizarre, and some may have unusual prefixes,
e.g. S OR AX,0x240A", and generating ‘DB’ instructions ever so often if it's totally stumped. Then it
will reach the code section.

Supposing NDISASM has just finished generating a strange machine instruction from part of the data section,
and its file position is now one bybeforethe beginning of the code section. It's entirely possible that another

spurious instruction will get generated, starting with the final byte of the data section, and then the correct first
instruction in the code section will not be seen because the starting point skipped over it. This isn’t really ideal.

To avoid this, you can specify aynchronisation’ point, or indeed as many synchronisation points as
you like (although NDISASM can only handle 2147483647 sync points internally). The definition of a sync
point is this: NDISASM guarantees to hit sync points exactly during disassembly. If it is thinking about
generating an instruction which would cause it to jump over a sync point, it will discard that instruction and
output a b’ instead. So itwill start disassembly exactly from the sync point, and sowjbbusee all the
instructions in your code section.

Sync points are specified using the option: they are measured in terms of the program origin, not the file
position. So if you want to synchronize after 32 bytes ofau file, you would have to do

ndisasm -0100h -s120h file.com
rather than
ndisasm -0100h -s20h file.com

As stated above, you can specify multiple sync markers if you need to, just by repeatingtien.

A.3.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation

Suppose you are disassembling the boot sector mfsafloppy (maybe it has a virus, and you need to
understand the virus so that you know what kinds of damage it might have done you). Typically, this will
contain aJMP instruction, then some data, then the rest of the code. So there is a very good chance of
NDISASM beingmisalignedwhen the data ends and the code begins. Hence a sync point is needed.

On the other hand, why should you have to specify the sync point manually? What you'd do in order to find
where the sync point would be, surely, would be to readireinstruction, and then to use its target address
as a sync point. So can NDISASM do that for you?

The answer, of course, is yes: using either of the synonymous switehifsr automatic sync) ori (for

intelligent sync) will enableauto-sync mode. Auto—sync mode automatically generates a sync point for

any forward-referring PC-relative jump or call instruction that NDISASM encounters. (Since NDISASM is
one-pass, if it encounters a PC-relative jump whose target has already been processed, there isn't much it car
do about it...)

Only PC-relative jumps are processed, since an absolute jump is either through a register (in which case
NDISASM doesn’t know what the register contains) or involves a segment address (in which case the target
code isn't in the same segment that NDISASM is working in, and so the sync point can’t be placed anywhere
useful).

132

For some kinds of file, this mechanism will automatically put sync points in all the right places, and save you
from having to place any sync points manually. However, it should be stressed that auto—syncrobde is
guaranteed to catch all the sync points, and you may still have to place some manually.

Auto-sync mode doesn’t prevent you from declaring manual sync points: it just adds automatically generated
ones to the ones you provide. It's perfectly feasible to spedifgnd some-s options.

Another caveat with auto—sync mode is that if, by some unpleasant fluke, something in your data section
should disassemble to a PC-relative call or jump instruction, NDISASM may obediently place a sync point in
a totally random place, for example in the middle of one of the instructions in your code section. So you may
end up with a wrong disassembly even if you use auto—sync. Again, there isn't much | can do about this. If
you have problems, you'll have to use manual sync points, or usekthgption (documented below) to
suppress disassembly of the data area.

A.3.4 Other Options

A.4

The —e option skips a header on the file, by ignoring the first N bytes. This means that the heaxter is
counted towards the disassembly offset: if you gige 0 -o010, disassembly will start at byte 10 in the file,
and this will be given offset 10, not 20.

The -k option is provided with two comma-separated numeric arguments, the first of which is an assembly
offset and the second is a number of bytes to skip. Witliscount the skipped bytes towards the assembly
offset: its use is to suppress disassembly of a data section which wouldn’t contain anything you wanted to see
anyway.

Bugs and Improvements

There are no known bugs. However, any you find, with patches if possible, should be sent to
nasm-bugs@lists.sourceforge.net, or to the developer's site attp://www.nasm.us/ and
we'll try to fix them. Feel free to send contributions and new features as well.

133

mailto:nasm-bugs@lists.sourceforge.net
http://www.nasm.us/

Appendix B: Instruction List

B.1 Introduction

The following sections show the instructions which NASM currently supports. For each instruction, there is a
separate entry for each supported addressing mode. The third column shows the processor type in which the
instruction was introduced and, when appropriate, one or more usage flags.

B.1.1 Special instructions...

DB
DW
DD
DQ
DT
DO
DY
DZ
RESB imm 8086
RESW
RESD
RESQ
REST
RESO
RESY
RESZ

B.1.2 Conventional instructions

AAA 8086, NOLONG
AAD 8086, NOLONG
AAD imm 8086, NOLONG
AAM 8086, NOLONG
AAM imm 8086, NOLONG
AAS 8086, NOLONG
ADC mem, reg8 8086, LOCK
ADC reg8, reg8 8086

ADC mem, regl6 8086, LOCK
ADC regl6, reglb 8086

ADC mem, reg32 386, LOCK
ADC reg32,reg32 386

ADC mem, regb64 X64, LOCK
ADC reg64, reg64 X64

ADC reg8, mem 8086

ADC reg8, reg8 8086

ADC regl6, mem 8086

134

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD

regl6, reglb
reg32,mem
reg32,reg32
reg64, mem

reg64, reg64
rml6, imm8

rm32, imm8

rm64, imm8
reg_al,imm
reg_ax, sbyteword
reg_ax, imm
reg_eax, sbytedword
reg_eax, imm
reg_rax, sbytedword
reg_rax, imm

rm8, imm

rmlé6, sbyteword
rml6, imm

rm32, sbytedword
rm32, imm

rm64, sbytedword
rm64, imm

mem, imm8

mem, sbytewordl6
mem, imml6

mem, sbytedword32
mem, imm32

rm8, imm

mem, reg8

reg8, reg8

mem, regl6

regl6, reglb

mem, reg32
reg32,reg32

mem, regb64

reg64, reg64
reg8, mem

reg8, reg8

regl6, mem

regl6, reglb
reg32,mem
reg32,reg32
reg64, mem

reg64, reg64
rml6, imm8

rm32, imm8

rm64, imm8
reg_al,imm
reg_ax, sbyteword

8086

386

386

X64

X64

8086, LOCK
386, LOCK
X64, LOCK
8086
8086, ND
8086

386, ND

386

X64,ND

X64

8086, LOCK
8086, LOCK, ND
8086, LOCK
386, LOCK, ND
386, LOCK
X64, LOCK, ND
X64, LOCK
8086, LOCK, ND
8086, LOCK, ND
8086, LOCK
386, LOCK, ND
386, LOCK
8086, LOCK, ND, NOLONG
8086, LOCK
8086

8086, LOCK
8086

386, LOCK
386

X64, LOCK
X64

8086

8086

8086

8086

386

386

X64

X64

8086, LOCK
386, LOCK
X64, LOCK
8086
8086, ND

135

136

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

reg_ax, imm
reg_eax, sbytedword
reg_eax, imm
reg_rax, sbytedword
reg_rax, imm

rm8, imm

rmlé6, sbyteword
rml6, imm

rm32, sbytedword
rm32, imm

rm64, sbytedword
rm64, imm

mem, imm8

mem, sbytewordl6
mem, imml6

mem, sbytedword32
mem, imm32

rm8, imm

mem, reg8

reg8, reg8

mem, regl6

regl6, reglb

mem, reg32
reg32,reg32

mem, regb64

reg64, reg64
reg8, mem

reg8, reg8

regl6, mem

regl6, reglb
reg32,mem
reg32,reg32
reg64, mem

reg64, reg64
rml6, imm8

rm32, imm8

rm64, imm8
reg_al, imm
reg_ax, sbyteword
reg_ax, imm
reg_eax, sbytedword
reg_eax, imm
reg_rax, sbytedword
reg_rax, imm

rm8, imm

rmlé6, sbyteword
rml6, imm

rm32, sbytedword
rm32, imm

8086

386, ND

386

X64,ND

X64

8086, LOCK
8086, LOCK, ND
8086, LOCK
386, LOCK, ND
386, LOCK
X64, LOCK, ND
X64, LOCK
8086, LOCK
8086, LOCK, ND
8086, LOCK
386, LOCK, ND
386, LOCK
8086, LOCK, ND, NOLONG
8086, LOCK
8086

8086, LOCK
8086

386, LOCK
386

X64, LOCK
X64

8086

8086

8086

8086

386

386

X64

X64

8086, LOCK
386, LOCK
X64, LOCK
8086
8086, ND
8086

386, ND

386

X64,ND

X64

8086, LOCK
8086, LOCK, ND
8086, LOCK
386, LOCK, ND
386, LOCK

AND
AND
AND
AND
AND
AND
AND
AND
ARPL
ARPL
BBO_RESET
BB1_RESET
BOUND
BOUND
BSF
BSF
BSF
BSF
BSF
BSF
BSR
BSR
BSR
BSR
BSR
BSR
BSWAP
BSWAP
BT

BT

BT

BT

BT

BT

BT

BT

BT
BTC
BTC
BTC
BTC
BTC
BTC
BTC
BTC
BTC
BTR
BTR
BTR

rm64, sbytedword
rm64, imm

mem, imm8

mem, sbytewordl6
mem, imml6

mem, sbytedword32
mem, imm32

rm8, imm

mem, regl6

regl6, reglb

regl6, mem
reg32,mem
regl6, mem
regl6, reglb
reg32,mem
reg32,reg32
reg64, mem
reg64, reg64
regl6, mem
regl6, reglb
reg32,mem
reg32,reg32
reg64, mem
reg64, reg64
reg32

regb64

mem, regl6
regl6, reglb
mem, reg32
reg32,reg32
mem, regb64
reg64, reg64
rml6, imm
rm32, imm
rm64, imm
mem, regl6
regl6, reglb
mem, reg32
reg32,reg32
mem, regb64
reg64, reg64
rml6, imm
rm32, imm
rm64, imm
mem, regl6
regl6, reglb
mem, reg32

X64, LOCK, ND
X64, LOCK
8086, LOCK
8086, LOCK, ND
8086, LOCK
386, LOCK, ND
386, LOCK

8086, LOCK, ND, NOLONG
286, PROT, NOLONG
286, PROT, NOLONG
PENT, CYRIX, ND

PENT, CYRIX, ND

186, NOLONG
386, NOLONG
386

386

386

386

X64

X64

386

386

386

386

X64

X64

486

X64

386

386

386

386

X64

X64

386

386

X64

386, LOCK
386

386, LOCK
386

X64, LOCK
X64

386, LOCK
386, LOCK
X64, LOCK
386, LOCK
386

386, LOCK

137

138

BTR
BTR
BTR
BTR
BTR
BTR
BTS
BTS
BTS
BTS
BTS
BTS
BTS
BTS
BTS
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CBW
CDQ
CDQE
CLC
CLD

reg32,reg32
mem, regb64
reg64, reg64
rml6, imm
rm32, imm
rm64, imm
mem, regl6
regl6, reglb
mem, reg32
reg32,reg32
mem, regb64
reg64, reg64
rml6, imm
rm32, imm
rm64, imm
imm
imm|near
imm| far
imml6

imm16 |near
imm16 | far
imm32

imm32 |near
imm32 | far
immé64

immé64 |near
imm:imm
imml6:imm
imm:imml6
imm32:imm
imm:imm32
mem | far
mem | far
meml16 | far
mem32 | far
mem64 | far
mem|near
rmlé6|near
rm32 |near
rmé64 |near
mem

rml6

rm32

rm64

386

X64, LOCK

X64

386, LOCK

386, LOCK

X64, LOCK

386, LOCK

386

386, LOCK

386

X64, LOCK

X64

386, LOCK

386, LOCK

X64, LOCK

8086, BND
8086, ND, BND
8086, ND, NOLONG
8086, NOLONG, BND
8086, ND, NOLONG, BND
8086, ND, NOLONG
386, NOLONG, BND
386, ND, NOLONG, BND
386, ND, NOLONG
X64, BND

X64,ND, BND
8086, NOLONG
8086, NOLONG
8086, NOLONG
386, NOLONG

386, NOLONG
8086, NOLONG

X64

8086

386

X64

8086, ND, BND
8086, NOLONG, ND, BND
386, NOLONG, ND, BND
X64,ND, BND
8086, BND

8086, NOLONG, BND
386, NOLONG, BND
X64, BND

8086

386

X64

8086

8086

CLI
CLTS
CMC
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMPSB
CMPSD
CMPSQ
CMPSW
CMPXCHG
CMPXCHG
CMPXCHG

mem, reg8

reg8, reg8

mem, regl6

regl6, reglb

mem, reg32
reg32,reg32

mem, regb64

reg64, reg64
reg8, mem

reg8, reg8

regl6, mem

regl6, reglb
reg32,mem
reg32,reg32
reg64, mem

reg64, reg64
rml6, imm8

rm32, imm8

rm64, imm8
reg_al,imm
reg_ax, sbyteword
reg_ax, imm
reg_eax, sbytedword
reg_eax, imm
reg_rax, sbytedword
reg_rax, imm

rm8, imm

rmlé6, sbyteword
rml6, imm

rm32, sbytedword
rm32, imm

rm64, sbytedword
rm64, imm

mem, imm8

mem, sbytewordl6
mem, imml6

mem, sbytedword32
mem, imm32

rm8, imm

mem, reg8
reg8, reg8
mem, regl6

8086
286,PRIV
8086
8086
8086
8086
8086
386

386

X64

X64
8086
8086
8086
8086
386

386

X64

X64
8086
386

X64
8086
8086, ND
8086
386, ND
386
X64,ND
X64
8086
8086, ND
8086
386, ND
386
X64,ND
X64
8086
8086, ND
8086
386, ND
386
8086, ND, NOLONG
8086
386

X64
8086
PENT, LOCK
PENT
PENT, LOCK

139

140

CMPXCHG
CMPXCHG
CMPXCHG
CMPXCHG
CMPXCHG
CMPXCHG486
CMPXCHG486
CMPXCHG486
CMPXCHG486
CMPXCHG486
CMPXCHG486
CMPXCHGS8B
CMPXCHG16B
CPUID
CPU_READ
CPU_WRITE
CQO

CWD

CWDE

DAA

DAS

DEC

DEC

DEC

DEC

DEC

DEC

DIV

DIV

DIV

DIV

DMINT

EMMS

ENTER

EQU

EQU

F2XM1

FABS

FADD

FADD

FADD

FADD

FADD

FADD

FADD

FADDP
FADDP
FADDP

FBLD

regl6, reglb
mem, reg32
reg32,reg32
mem, regb64
reg64, reg64
mem, reg8
reg8, reg8
mem, regl6
regl6, reglb
mem, reg32
reg32,reg32
mem

mem

reglé6
reg32
rm8
rmlé6
rm32
rmé64
rm8
rmlé6
rm32
rmé64

imm, imm
imm
imm: imm

mem32

mem64
fpureg|to
fpureg
fpureg, fpul
fpul, fpureg

fpureg
fpureg, fpul

mem80

PENT

PENT, LOCK
PENT

X64, LOCK

X64

486, UNDOC, ND, LOCK
486, UNDOC, ND
486, UNDOC, ND, LOCK
486, UNDOC, ND
486, UNDOC, ND, LOCK
486, UNDOC, ND
PENT, LOCK
X64, LOCK
PENT

PENT, CYRIX
PENT, CYRIX
X64

8086

386

8086, NOLONG
8086, NOLONG
8086, NOLONG
386, NOLONG
8086, LOCK
8086, LOCK
386, LOCK
X64, LOCK
8086

8086

386

X64

P6,CYRIX
PENT, MMX

186

8086

8086

8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU, ND
8086, FPU
8086, FPU
8086, FPU, ND
8086, FPU

FBLD
FBSTP
FBSTP
FCHS
FCLEX
FCMOVB
FCMOVB
FCMOVB
FCMOVBE
FCMOVBE
FCMOVBE
FCMOVE
FCMOVE
FCMOVE
FCMOVNB
FCMOVNB
FCMOVNB
FCMOVNBE
FCMOVNBE
FCMOVNBE
FCMOVNE
FCMOVNE
FCMOVNE
FCMOVNU
FCMOVNU
FCMOVNU
FCMOVU
FCMOVU
FCMOVU
FCOM
FCOM
FCOM
FCOM
FCOM
FCOMI
FCOMI
FCOMI
FCOMIP
FCOMIP
FCOMIP
FCOMP
FCOMP
FCOMP
FCOMP
FCOMP
FCOMPP
FCOS
FDECSTP
FDISIT

mem
mem80
mem

fpureg
fpul, fpureg

fpureg
fpul, fpureg

fpureg
fpul, fpureg

fpureg
fpul, fpureg

fpureg
fpul, fpureg

fpureg
fpul, fpureg

fpureg
fpul, fpureg

fpureg
fpul, fpureg

mem32

mem64
fpureg
fpul, fpureg

fpureg
fpul, fpureg

fpureg
fpul, fpureg

mem32

mem64
fpureg
fpul, fpureg

8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
P6,FPU
P6,FPU
P6,FPU, ND
P6,FPU
P6,FPU
P6,FPU, ND
P6,FPU
P6,FPU
P6,FPU, ND
P6,FPU
P6,FPU
P6,FPU, ND
P6,FPU
P6,FPU
P6,FPU, ND
P6,FPU
P6,FPU
P6,FPU, ND
P6,FPU
P6,FPU
P6,FPU, ND
P6,FPU
P6,FPU
P6,FPU, ND
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU, ND
P6,FPU
P6,FPU
P6,FPU, ND
P6,FPU
P6,FPU
P6,FPU, ND
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU, ND
8086, FPU
386,FPU
8086, FPU
8086, FPU

141

FDIV mem32 8086, FPU

FDIV mem64 8086, FPU
FDIV fpureg|to 8086, FPU
FDIV fpureg 8086, FPU
FDIV fpureg, fpul 8086, FPU
FDIV fpul, fpureg 8086, FPU
FDIV 8086, FPU,ND
FDIVP fpureg 8086, FPU
FDIVP fpureg, fpul 8086, FPU
FDIVP 8086, FPU,ND
FDIVR mem32 8086, FPU
FDIVR memé64 8086, FPU
FDIVR fpureg|to 8086, FPU
FDIVR fpureg, fpul 8086, FPU
FDIVR fpureg 8086, FPU
FDIVR fpul, fpureg 8086, FPU
FDIVR 8086, FPU,ND
FDIVRP fpureg 8086, FPU
FDIVRP fpureg, fpul 8086, FPU
FDIVRP 8086, FPU,ND
FEMMS PENT, 3DNOW
FENI 8086, FPU
FFREE fpureg 8086, FPU
FFREE 8086, FPU
FFREEP fpureg 286, FPU, UNDOC
FFREEP 286, FPU, UNDOC
FIADD mem32 8086, FPU
FIADD memlb6 8086, FPU
FICOM mem32 8086, FPU
FICOM memlb6 8086, FPU
FICOMP mem32 8086, FPU
FICOMP memlb6 8086, FPU
FIDIV mem32 8086, FPU
FIDIV memlb6 8086, FPU
FIDIVR mem32 8086, FPU
FIDIVR memlb6 8086, FPU
FILD mem32 8086, FPU
FILD meml6 8086, FPU
FILD mem64 8086, FPU
FIMUL mem32 8086, FPU
FIMUL memlb6 8086, FPU
FINCSTP 8086, FPU
FINIT 8086, FPU
FIST mem32 8086, FPU
FIST meml6 8086, FPU
FISTP mem32 8086, FPU
FISTP memlb6 8086, FPU
FISTP memé64 8086, FPU
FISTTP memlb6 PRESCOTT, FPU

142

FISTTP mem32 PRESCOTT, FPU

FISTTP memé64 PRESCOTT, FPU
FISUB mem32 8086, FPU
FISUB meml6 8086, FPU
FISUBR mem32 8086, FPU
FISUBR meml6 8086, FPU
FLD mem32 8086, FPU
FLD mem64 8086, FPU
FLD mem80 8086, FPU
FLD fpureg 8086, FPU
FLD 8086, FPU,ND
FLD1 8086, FPU
FLDCW mem 8086, FPU, SW
FLDENV mem 8086, FPU
FLDL2E 8086, FPU
FLDL2T 8086, FPU
FLDLG2 8086, FPU
FLDLN2 8086, FPU
FLDPI 8086, FPU
FLDZ 8086, FPU
FMUL mem32 8086, FPU
FMUL mem64 8086, FPU
FMUL fpureg|to 8086, FPU
FMUL fpureg, fpul 8086, FPU
FMUL fpureg 8086, FPU
FMUL fpul, fpureg 8086, FPU
FMUL 8086, FPU,ND
FMULP fpureg 8086, FPU
FMULP fpureg, fpul 8086, FPU
FMULP 8086, FPU,ND
FNCLEX 8086, FPU
FNDIST 8086, FPU
FNENI 8086, FPU
FNINIT 8086, FPU
FNOP 8086, FPU
FNSAVE mem 8086, FPU
FNSTCW mem 8086, FPU, SW
FNSTENV mem 8086, FPU
FNSTSW mem 8086, FPU, SW
FNSTSW reg_ax 286, FPU
FPATAN 8086, FPU
FPREM 8086, FPU
FPREM1 386, FPU
FPTAN 8086, FPU
FRNDINT 8086, FPU
FRSTOR mem 8086, FPU
FSAVE mem 8086, FPU
FSCALE 8086, FPU
FSETPM 286,FPU

143

144

FSIN
FSINCOS
FSQORT
FST
FST
FST
FST
FSTCW
FSTENV
FSTP
FSTP
FSTP
FSTP
FSTP
FSTSW
FSTSW
FSUB
FSUB
FSUB
FSUB
FSUB
FSUB
FSUB
FSUBP
FSUBP
FSUBP
FSUBR
FSUBR
FSUBR
FSUBR
FSUBR
FSUBR
FSUBR
FSUBRP
FSUBRP
FSUBRP
FTST
FUCOM
FUCOM
FUCOM
FUCOMI
FUCOMI
FUCOMI
FUCOMIP
FUCOMIP
FUCOMIP
FUCOMP
FUCOMP
FUCOMP

mem32
mem64
fpureg

mem
mem
mem32
memé64
mem80
fpureg

mem
reg_ax
mem32

mem64
fpureg|to
fpureg, fpul
fpureg
fpul, fpureg

fpureg
fpureg, fpul

mem32

mem64
fpureg|to
fpureg, fpul
fpureg
fpul, fpureg

fpureg
fpureg, fpul
fpureg

fpul, fpureg

fpureg
fpul, fpureg

fpureg
fpul, fpureg

fpureg
fpul, fpureg

386,FPU
386,FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU, ND
8086, FPU, SW
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU, ND
8086, FPU, SW
286,FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU, ND
8086, FPU
8086, FPU
8086, FPU, ND
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU, ND
8086, FPU
8086, FPU
8086, FPU, ND
8086, FPU
386,FPU
386,FPU
386,FPU, ND
P6,FPU
P6,FPU
P6,FPU, ND
P6,FPU
P6,FPU
P6,FPU, ND
386,FPU
386,FPU
386,FPU, ND

FUCOMPP
FXAM
FXCH
FXCH
FXCH
FXCH
FXTRACT
FYL2X
FYL2XP1
HLT
IBTS
IBTS
IBTS
IBTS
ICEBP
IDIV
IDIV
IDIV
IDIV
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL

fpureg
fpureg, fpul
fpul, fpureg

mem, regl6
regl6, reglb
mem, reg32
reg32,reg32

rm8

rml6

rm32

rmé64

rm8

rml6

rm32

rmé64

regl6, mem

regl6, reglb
reg32,mem
reg32,reg32

reg64, mem

reg64, reg64
regl6,mem, imm8
regl6,mem, sbyteword
regl6,mem, imml6
regl6, mem, imm

regl6, regl6, imm8
regl6, regl6, sbyteword
regl6, regl6,immlé6
regl6, regl6, imm
reg32,mem, imm8
reg32,mem, sbytedword
reg32,mem, imm32
reg32,mem, imm
reg32,reg32, imm8
reg32,reg32, sbytedword
reg32,reg32,imm32
reg32,reg32,imm
reg64, mem, imm8
reg64,mem, sbytedword
reg64, mem, imm32
reg64, mem, imm

386,FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU, ND
8086, FPU
8086, FPU
8086, FPU
8086, PRIV
386, SW, UNDOC, ND
386, UNDOC, ND
386, SD, UNDOC, ND
386, UNDOC, ND
386, ND

8086

8086

386

X64

8086

8086

386

X64

386

386

386

386

X64

X64

186

186, ND

186

186, ND

186

186, ND

186

186, ND

386

386, ND

386

386, ND

386

386, ND

386

386, ND

X64

X64,ND

X64

X64,ND

145

146

IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL

IN

IN

IN

IN

IN

IN

INC

INC

INC

INC

INC

INC
INCBIN
INSB
INSD
INSW
INT
INTO1
INT1
INTO3
INT3
INTO
INVD
INVPCID
INVPCID
INVLPG
INVLPGA
INVLPGA
INVLPGA
INVLPGA
IRET
IRETD
IRETQ

regb64, reg64, imm8

reg64, reg64, sbytedword
reg64, reg64, imm32

reg64, reg64, imm
regl6, imm8
regl6, sbyteword
regl6,immlé6
regl6, imm
reg32, imm8

reg32, sbytedword

reg32, imm32
reg32, imm
reg64, imm8

regb64, sbytedword

reg64, imm32
reg64, imm
reg_al,imm
reg_ax, imm
reg_eax, imm
reg_al, reg_dx
reg_ax, reg_dx
reg_eax, reg_dx
reglé6

reg32

rm8

rmlé6

rm32

rmé64

imm

reg32,meml28
reg64,meml28
mem

reg_ax, reg_ecx
reg_eax, reg_ecx
reg_rax,reg_ecx

X64
X64,ND
X64
X64,ND
186

186, ND
186

186, ND
386

386, ND
386

386, ND
X64
X64,ND
X64
X64,ND
8086

8086

386

8086

8086

386

8086, NOLONG
386, NOLONG
8086, LOCK
8086, LOCK
386, LOCK
X64, LOCK

186

386

186

8086

386, ND

386

8086, ND

8086

8086, NOLONG

486,PRIV

FUTURE, INVPCID, PRIV, NOLONG
FUTURE, INVPCID, PRIV, LONG
486,PRIV
X86_64, AMD, NOLONG
X86_64,AMD

X64, AMD

X86_64,AMD

8086

386

X64

IRETW
JCX7Z
JECXZ
JRCXZ
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMPE
JMPE
JMPE
JMPE
JMPE
LAHF
LAR
LAR
LAR
LAR
LAR
LAR
LAR
LAR

imm

imm

imm
imm|short
imm

imm
imm|near
imm| far
immlé
imm16 |near
imm16 | far
imm32
imm32 |near
imm32 | far
imm64
immé64 |near
imm: imm
imml6:imm
imm:imml6
imm32:imm
imm:imm32
mem| far
mem| far
meml16 | far
mem32 | far
mem64 | far
mem |near
rmlé6|near
rm32 |near
rm64 |near
mem

rml6

rm32

rmé64

imm

immlé
imm32
rml6

rm32

regl6, mem

regl6, reglb
regl6, reg32
regl6, reg64
reg32,mem

reg32,reglb
reg32,reg32
reg32, regb64

8086

8086, NOLONG

386

X64

8086

8086, ND

8086, BND
8086, ND, BND
8086, ND, NOLONG
8086, NOLONG, BND
8086, ND, NOLONG, BND
8086, ND, NOLONG
386, NOLONG, BND
386, ND, NOLONG, BND
386, ND, NOLONG
X64, BND

X64,ND, BND
8086, NOLONG
8086, NOLONG
8086, NOLONG
386, NOLONG

386, NOLONG
8086, NOLONG

X64

8086

386

X64

8086, ND, BND
8086, NOLONG, ND, BND
386, NOLONG, ND, BND
X64,ND, BND
8086, BND

8086, NOLONG, BND
386, NOLONG, BND
X64, BND

IA64

IA64

IA64

IA64

IA64

8086
286,PROT, SW
286, PROT

386, PROT
X64,PROT, ND
386, PROT, SW
386, PROT

386, PROT
X64,PROT, ND

147

148

LAR
LAR
LAR
LAR
LDS
LDS
LEA
LEA
LEA
LEAVE
LES
LES
LFENCE
LF'S
LF'S
LF'S
LGDT
LGS
LGS
LGS
LIDT
LLDT
LLDT
LLDT
LMSW
LMSW
LMSW
LOADALL
LOADALL286
LODSB
LODSD
LODSQ
LODSW
LOOP
LOOP
LOOP
LOOP
LOOPE
LOOPE
LOOPE
LOOPE
LOOPNE
LOOPNE
LOOPNE
LOOPNE
LOOPNZ
LOOPNZ
LOOPNZ
LOOPNZ

reg64, mem
reg64, reglb
reg64, reg32
reg64, reg64
regl6, mem
reg32,mem
regl6, mem
reg32,mem
reg64, mem

regl6, mem
reg32,mem

regl6, mem
reg32,mem
reg64, mem
mem
regl6, mem
reg32,mem
reg64, mem
mem

mem

meml6
reglé6

mem

meml6
reglé6

imm

imm, reg_cx

imm, reg_ecx
imm, reg_rcx
imm

imm, reg_cx

imm, reg_ecx
imm, reg_rcx
imm

imm, reg_cx

imm, reg_ecx
imm, reg_rcx
imm

imm, reg_cx

imm, reg_ecx
imm, reg_rcx

X64,PROT, SW
X64,PROT
X64,PROT
X64,PROT
8086, NOLONG
386, NOLONG
8086

386

X64

186

8086, NOLONG
386, NOLONG
X64, AMD

386

386

X64
286,PRIV
386

386

X64
286,PRIV
286,PROT, PRIV
286,PROT, PRIV
286,PROT, PRIV
286,PRIV
286,PRIV
286,PRIV
386, UNDOC, ND
286, UNDOC, ND
8086

386

X64

8086

8086

8086, NOLONG
386

X64

8086

8086, NOLONG
386

X64

8086

8086, NOLONG
386

X64

8086

8086, NOLONG
386

X64

LOOPZ
LOOPZ
LOOPZ
LOOPZ
LSL
LSL
LSL
LSL
LSL
LSL
LSL
LSL
LSL
LSL
LSL
LSL
LSS
LSS
LSS
LTR
LTR
LTR
MFENCE
MONITOR
MONITOR
MONITOR
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

imm

imm, reg_cx
imm, reg_ecx
imm, reg_rcx
regl6, mem
regl6, reglb
regl6, reg32
regl6, reg64
reg32,mem
reg32,reglb
reg32,reg32
reg32, regb4
reg64, mem
reg64, reglb
reg64, reg32
reg64, reg64
regl6, mem
reg32,mem
reg64, mem
mem

meml6

reglé6

reg_eax, reg_ecx,reg_edx
reg_rax, reg_ecx,reg_edx
mem, reg_sreg
regl6, reg_sreg
reg32, reg_sreg
reg64, reg_sreg
rmé64, reg_sreg
reg_sreg,mem
reg_sreg, reglb
reg_sreg, reg32
reg_sreg, regb4
reg_sreg, reglb
reg_sreg, reg32
reg_sreg, rm64
reg_al,mem_offs
reg_ax,mem_offs
reg_eax,mem_offs
reg_rax,mem_offs
mem_offs, reg_al
mem_offs, reg_ax
mem_offs, reg_eax
mem_offs, reg_rax
reg32, reg_creg
regb64, reg_creg
reg_creg, reg32

8086

8086, NOLONG
386

X64
286,PROT, SW
286, PROT
386, PROT
X64,PROT, ND
386, PROT, SW
386, PROT
386, PROT
X64,PROT, ND
X64,PROT, SW
X64,PROT
X64,PROT
X64,PROT
386

386

X64

286,PROT, PRIV
286,PROT, PRIV
286,PROT, PRIV

X64, AMD
PRESCOTT

PRESCOTT, NOLONG, ND

X64,ND
8086, SW
8086

386
X64,0PT,ND
X64
8086, SW
8086, OPT, ND
386,0PT, ND
X64,0PT,ND
8086

386

X64

8086

8086

386

X64

8086, NOHLE
8086, NOHLE
386, NOHLE
X64, NOHLE

386, PRIV, NOLONG

X64,PRIV

386, PRIV, NOLONG

149

150

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOVD
MOVD
MOVD
MOVD
MOVQ
MOVQ
MOVQ
MOVQ
MOVSB
MOVSD
MOVSQ
MOVSW

reg_creg, regb64
reg32, reg_dreg
regb64, reg_dreg
reg_dreg, reg32
reg_dreg, reg64
reg32, reg_treg
reg_treqg, reg32
mem, reg8

reg8, reg8

mem, regl6
regl6, reglb
mem, reg32
reg32,reg32
mem, regb64
reg64, reg64
reg8, mem

reg8, reg8
regl6, mem
regl6, reglb
reg32,mem
reg32,reg32
reg64, mem
reg64, reg64
reg8, imm
regl6, imm
reg32, imm
reg64,udword
reg64, sdword
reg64, imm

rm8, imm

rml6, imm

rm32, imm

rm64, imm

rm64, imm32
mem, imm8

mem, imml6

mem, imm32
mmxreg, rm32
rm32, mmxreg
mmxreg, rmé64
rm64, mmxreg
mmxreg, mmxrm
mmxrm, mmxreg
mmxreg, rmé64
rm64, mmxreg

X64, PRIV

386, PRIV, NOLONG

X64, PRIV

386, PRIV, NOLONG

X64, PRIV
386, NOLONG, ND
386, NOLONG, ND
8086

8086

8086

8086

386

386

X64

X64

8086

8086

8086

8086

386

386

X64

X64

8086

8086

386
X64,0PT,ND
X64,0PT,ND
X64

8086

8086

386

X64

X64

8086

8086

386

PENT, MMX, SD
PENT, MMX, SD
X64,MMX, SX, ND
X64,MMX, SX, ND
PENT, MMX
PENT, MMX
X64, MMX
X64, MMX
8086

386

X64

8086

MOVSX
MOVSX
MOVSX
MOVSX
MOVSX
MOVSX
MOVSXD
MOVSX
MOVZX
MOVZX
MOVZX
MOVZX
MOVZX
MOVZX
MUL
MUL
MUL
MUL
MWAIT
MWAIT
NEG
NEG
NEG
NEG
NOP
NOP
NOP
NOP
NOT
NOT
NOT
NOT
OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

regl6, mem

regl6, reg8
reg32, rm8

reg32,rml6
reg64, rm8

reg64, rml6
reg64, rm32
reg64, rm32
regl6, mem

regl6, reg8
reg32, rm8

reg32,rml6
reg64, rm8

reg64, rml6
rm8

rml6

rm32

rmé64

reg_eax, reg_ecx

rm8

rmlé6
rm32
rmé64

rmlé6
rm32
rmé64
rm8
rmlé6
rm32
rmé64
mem, reg8
reg8, reg8
mem, regl6

regl6, reglb

mem, reg32

reg32,reg32

mem, regb64

reg64, reg64

reg8, mem
reg8, reg8
regl6, mem

regl6, reglb

reg32,mem

reg32,reg32

reg64, mem

reg64, reg64

rml6, imm8

386
386
386
386
X64
X64
X64
X64,ND
386
386
386
386
X64
X64
8086
8086
386
X64
PRESCOTT

PRESCOTT, ND

8086, LOCK
8086, LOCK
386, LOCK
X64, LOCK
8086

P6

P6

X64

8086, LOCK
8086, LOCK
386, LOCK
X64, LOCK
8086, LOCK
8086
8086, LOCK
8086

386, LOCK
386

X64, LOCK
X64

8086

8086

8086

8086

386

386

X64

X64

8086, LOCK

151

152

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OuT

OuT

OuT

OuT

OuT

OuT
OUTSB
OUTSD
OUTSW
PACKSSDW
PACKSSWB
PACKUSWB
PADDB
PADDD
PADDSB
PADDSIW
PADDSW
PADDUSB
PADDUSW
PADDW
PAND
PANDN
PAUSE
PAVEB
PAVGUSB
PCMPEQB
PCMPEQD

rm32, imm8

rm64, imm8
reg_al,imm
reg_ax, sbyteword
reg_ax, imm

reg_eax, sbytedword

reg_eax, imm

reg_rax, sbytedword

reg_rax, imm
rm8, imm

rmlé6, sbyteword
rml6, imm

rm32, sbytedword
rm32, imm

rm64, sbytedword
rm64, imm

mem, imm8

mem, sbytewordl6
mem, imml6

mem, sbytedword32
mem, imm32

rm8, imm

imm, reg_al

imm, reg_ax

imm, reg_eax
reg_dx, reg_al
reg_dx, reg_ax
reg_dx, reg_eax

mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm

mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm

386, LOCK
X64, LOCK
8086
8086, ND
8086

386, ND

386

X64,ND

X64

8086, LOCK
8086, LOCK, ND
8086, LOCK
386, LOCK, ND
386, LOCK
X64, LOCK, ND
X64, LOCK
8086, LOCK
8086, LOCK, ND
8086, LOCK
386, LOCK, ND
386, LOCK

8086, LOCK, ND, NOLONG

8086

8086

386

8086

8086

386

186

386

186

PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX, CYRIX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
8086
PENT, MMX, CYRIX
PENT, 3DNOW
PENT, MMX
PENT, MMX

PCMPEQW
PCMPGTB
PCMPGTD
PCMPGTW
PDISTIB
PF2ID
PFACC
PFADD
PFCMPEQ
PFCMPGE
PFCMPGT
PFMAX
PFMIN
PFMUL
PFRCP
PFRCPIT1
PFRCPIT2
PFRSQIT1
PFRSQRT
PFSUB
PFSUBR
PI2FD
PMACHRIW
PMADDWD
PMAGW
PMULHRIW
PMULHRWA
PMULHRWC
PMULHW
PMULLW
PMVGEZB
PMVLZB
PMVNZB
PMVZB
POP

POP

POP

POP

POP

POP

POP

POP

POP

POP

POP

POP

POPA
POPAD
POPAW

mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mem
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mem
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mem
mmxreg, mem
mmxreg, mem
mmxreg, mem
reglé6

reg32

regb64

rml6

rm32

rm64

reg_es
reg_cs
reg_ss
reg_ds
reg_f~fs
reg_gs

PENT, MMX
PENT, MMX

PENT, MMX

PENT, MMX
PENT, MMX, CYRIX
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, MMX, CYRIX
PENT, MMX
PENT, MMX, CYRIX
PENT, MMX, CYRIX
PENT, 3DNOW
PENT, MMX, CYRIX
PENT, MMX

PENT, MMX
PENT, MMX, CYRIX
PENT, MMX, CYRIX
PENT, MMX, CYRIX
PENT, MMX, CYRIX
8086

386, NOLONG

X64

8086

386, NOLONG

X64

8086, NOLONG
8086, UNDOC, ND
8086, NOLONG
8086, NOLONG
386

386

186, NOLONG
386, NOLONG
186, NOLONG

153

154

POPF
POPED
POPFQ
POPEFW
POR
PREFETCH
PREFETCHW
PSLLD
PSLLD
PSLLQ
PSLLQ
PSLLW
PSLLW
PSRAD
PSRAD
PSRAW
PSRAW
PSRLD
PSRLD
PSRLQ
PSRLQ
PSRLW
PSRLW
PSUBB
PSUBD
PSUBSB
PSUBSIW
PSUBSW
PSUBUSB
PSUBUSW
PSUBW
PUNPCKHBW
PUNPCKHDQ
PUNPCKHWD
PUNPCKLBW
PUNPCKLDQ
PUNPCKLWD
PUSH

PUSH

PUSH

PUSH

PUSH

PUSH

PUSH

PUSH

PUSH

PUSH

PUSH

PUSH

mmxreg, mmxrm
mem

mem

mmxreg, mmxrm
mmxreqg, imm
mmxreg, mmxrm
mmxreqg, imm
mmxreg, mmxrm
mmxreqg, imm
mmxreg, mmxrm
mmxreqg, imm
mmxreg, mmxrm
mmxreqg, imm
mmxreg, mmxrm
mmxreqg, imm
mmxreg, mmxrm
mmxreqg, imm
mmxreg, mmxrm
mmxreqg, imm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreqg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
reglé6

reg32

regb64

rml6

rm32

rm64

reg_es
reg_cs
reg_ss
reg_ds
reg_f~fs
reg_gs

8086

386, NOLONG
X64

8086

PENT, MMX
PENT, 3DNOW
PENT, 3DNOW
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX, CYRIX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
PENT, MMX
8086

386, NOLONG
X64

8086

386, NOLONG
X64

8086, NOLONG
8086, NOLONG
8086, NOLONG
8086, NOLONG
386

386

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSHA
PUSHAD
PUSHAW
PUSHF
PUSHFD
PUSHFQ
PUSHFW
PXOR
RCL
RCL
RCL
RCL
RCL
RCL
RCL
RCL
RCL
RCL
RCL
RCL
RCR
RCR
RCR
RCR
RCR
RCR
RCR
RCR
RCR
RCR
RCR
RCR
RDSHR
RDMSR
RDPMC
RDTSC
RDTSCP
RET

imm8
sbytewordlé6
imml6
sbytedword32
imm32
sbytedword32
imm32
sbytedwordé64
immé64
sbytedword32
imm32

mmxreg, mmxrm
rm8,unity
rm8, reg_cl
rm8, imm8
rmlé6,unity
rmlé6, reg_cl
rml6, imm8
rm32,unity
rm32,reg_cl
rm32, imm8
rm64,unity
rm64,reg_cl
rm64, imm8
rm8,unity
rm8, reg_cl
rm8, imm8
rmlé6,unity
rmlé6, reg_cl
rml6, imm8
rm32,unity
rm32,reg_cl
rm32, imm8
rm64,unity
rm64, reg_cl
rm64, imm8
rm32

186

186,AR0, SIZE, ND

186,AR0, SIZE

386, NOLONG, ARO, SIZE, ND
386, NOLONG, ARO, SIZE
386, NOLONG, SD, ND

386, NOLONG, SD

X64,AR0, SIZE, ND

X64,AR0, SIZE

X64,AR0, SIZE, ND

X64,AR0, SIZE
186, NOLONG
386, NOLONG
186, NOLONG
8086

386, NOLONG
X64

8086

PENT, MMX
8086

8086

186

8086

8086

186

386

386

386

X64

X64

X64

8086

8086

186

8086

8086

186

386

386

386

X64

X64

X64
P6,CYRIXM
PENT, PRIV
P6

PENT
X86_64
8086, BND

155

156

RET
RETF
RETF
RETN
RETN
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROR
ROR
ROR
ROR
ROR
ROR
ROR
ROR
ROR
ROR
ROR
ROR
RDM
RSDC
RSLDT
RSM
RSTS
SAHF
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SALC
SAR

imm

imm

imm
rm8,unity
rm8, reg_cl
rm8, imm8
rmlé6,unity
rmlé6, reg_cl
rml6, imm8
rm32,unity
rm32,reg_cl
rm32, imm8
rm64,unity
rm64,reg_cl
rm64, imm8
rm8,unity
rm8, reg_cl
rm8, imm8
rmlé6,unity
rmlé6, reg_cl
rml6, imm8
rm32,unity
rm32,reg_cl
rm32, imm8
rm64,unity
rm64,reg_cl
rm64, imm8

reg_sreg,mem80

mem80

mem80

rm8,unity
rm8, reg_cl
rm8, imm8
rmlé6,unity
rmlé6, reg_cl
rml6, imm8
rm32,unity
rm32,reg_cl
rm32, imm8
rm64,unity
rm64,reg_cl
rm64, imm8

rm8,unity

8086, SW, BND
8086
8086, SW
8086, BND
8086, SW, BND
8086

8086

186

8086

8086

186

386

386

386

X64

X64

X64

8086

8086

186

8086

8086

186

386

386

386

X64

X64

X64
P6,CYRIX, ND
486,CYRIXM
486,CYRIXM
PENTM
486,CYRIXM
8086
8086, ND
8086, ND
186, ND
8086, ND
8086, ND
186, ND
386, ND
386, ND
386, ND
X64,ND
X64,ND
X64,ND
8086, UNDOC
8086

SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB

rm8, reg_cl

rm8, imm8
rmlé6,unity
rmlé6, reg_cl
rml6, imm8
rm32,unity
rm32,reg_cl
rm32, imm8
rm64,unity
rm64, reg_cl
rm64, imm8

mem, reg8

reg8, reg8

mem, regl6
regl6, reglb
mem, reg32
reg32,reg32
mem, regb64
reg64, reg64
reg8, mem

reg8, reg8
regl6, mem
regl6, reglb
reg32,mem
reg32,reg32
reg64, mem
reg64, reg64
rml6, imm8

rm32, imm8

rm64, imm8
reg_al,imm
reg_ax, sbyteword
reg_ax, imm
reg_eax, sbytedword
reg_eax, imm
reg_rax, sbytedword
reg_rax, imm
rm8, imm

rmlé6, sbyteword
rml6, imm

rm32, sbytedword
rm32, imm

rm64, sbytedword
rm64, imm

mem, imm8

mem, sbytewordl6
mem, imml6

mem, sbytedword32
mem, imm32

8086

186

8086

8086

186

386

386

386

X64

X64

X64

8086, LOCK
8086

8086, LOCK
8086

386, LOCK
386

X64, LOCK
X64

8086

8086

8086

8086

386

386

X64

X64

8086, LOCK
386, LOCK
X64, LOCK
8086
8086, ND
8086

386, ND

386

X64,ND

X64

8086, LOCK
8086, LOCK, ND
8086, LOCK
386, LOCK, ND
386, LOCK
X64, LOCK, ND
X64, LOCK
8086, LOCK
8086, LOCK, ND
8086, LOCK
386, LOCK, ND
386, LOCK

157

158

SBB
SCASB
SCASD
SCASQ
SCASW
SFENCE
SGDT
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHRD
SHRD
SHRD
SHRD
SHRD
SHRD

rm8, imm

mem
rm8,unity

rm8, reg_cl

rm8, imm8
rmlé6,unity

rmlé6, reg_cl
rml6, imm8
rm32,unity
rm32,reg_cl
rm32, imm8
rm64,unity
rm64,reg_cl
rm64, imm8

mem, regl6, imm
regl6, regl6, imm
mem, reg32, imm
reg32,reg32,imm
mem, reg64, imm
reg64, reg64, imm
mem, regl6, reg_cl
regl6, regl6, reg_cl
mem, reg32, reg_cl
reg32,reg32,reg_cl
mem, reg64, reg_cl
reg64, reg64,reg_cl
rm8,unity

rm8, reg_cl

rm8, imm8
rmlé6,unity

rmlé6, reg_cl
rml6, imm8
rm32,unity
rm32,reg_cl
rm32, imm8
rm64,unity

rm64, reg_cl
rm64, imm8

mem, regl6, imm
regl6, regl6, imm
mem, reg32, imm
reg32,reg32,imm
mem, reg64, imm
reg64, reg64, imm

8086, LOCK, ND, NOLONG
8086
386
X64
8086
X64, AMD
286
8086
8086
186
8086
8086
186
386
386
386
X64
X64
X64
3862
3862
3862
3862
X642
X642
386
386
386
386
X64
X64
8086
8086
186
8086
8086
186
386
386
386
X64
X64
X64
3862
3862
3862
3862
X642
X642

SHRD
SHRD
SHRD
SHRD
SHRD
SHRD
SIDT
SLDT
SLDT
SLDT
SLDT
SLDT
SLDT
SKINIT
SMI
SMINT
SMINTOLD
SMSW
SMSW
SMSW
SMSW
STC
STD
STI
STOSB
STOSD
STOSQ
STOSW
STR
STR
STR
STR
STR
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB

mem, regl6, reg_cl
regl6, regl6, reg_cl
mem, reg32, reg_cl
reg32,reg32,reg_cl
mem, reg64, reg_cl
reg64, reg64, reg_cl

mem
mem

meml6
reglé6
reg32
regb64
regb64

mem
meml6
reglé6
reg32

mem
meml6

reglé6

reg32

regb64

mem, reg8
reg8, reg8
mem, regl6
regl6, reglb
mem, reg32
reg32,reg32
mem, regb64
reg64, reg64
reg8, mem
reg8, reg8
regl6, mem
regl6, reglb
reg32,mem
reg32,reg32
reg64, mem
reg64, reg64

386

386

386

386

X64

X64

286

286

286

286

386
X64,ND
X64

X64

386, UNDOC
P6,CYRIX, ND
486,CYRIX, ND
286

286

286

386

8086

8086

8086

8086

386

X64

8086

286, PROT
286, PROT
286, PROT
386, PROT
X64

8086, LOCK
8086
8086, LOCK
8086

386, LOCK
386

X64, LOCK
X64

8086

8086

8086

8086

386

386

X64

X64

159

160

SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SVDC
SVLDT
SVTS
SWAPGS
SYSCALL
SYSENTER
SYSEXIT
SYSRET
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST

rml6, imm8

rm32, imm8

rm64, imm8
reg_al,imm
reg_ax, sbyteword
reg_ax, imm
reg_eax, sbytedword
reg_eax, imm
reg_rax, sbytedword
reg_rax, imm

rm8, imm

rmlé6, sbyteword
rml6, imm

rm32, sbytedword
rm32, imm

rm64, sbytedword
rm64, imm

mem, imm8

mem, sbytewordl6
mem, imml6

mem, sbytedword32
mem, imm32

rm8, imm

mem80, reg_sreg
mem80

mem80

mem, reg8
reg8, reg8
mem, regl6
regl6, reglb
mem, reg32
reg32,reg32
mem, regb64
reg64, reg64
reg8, mem
regl6, mem
reg32,mem
reg64, mem
reg_al,imm
reg_ax, imm
reg_eax, imm
reg_rax, imm
rm8, imm
rml6, imm

8086, LOCK
386, LOCK
X64, LOCK
8086
8086, ND
8086

386, ND

386

X64,ND

X64

8086, LOCK
8086, LOCK, ND
8086, LOCK
386, LOCK, ND
386, LOCK
X64, LOCK, ND
X64, LOCK
8086, LOCK
8086, LOCK, ND
8086, LOCK
386, LOCK, ND
386, LOCK
8086, LOCK, ND, NOLONG
486,CYRIXM
486, CYRIXM, ND
486,CYRIXM
X64

P6, AMD

P6

P6, PRIV
P6,PRIV,AMD
8086

8086

8086

8086

386

386

X64

X64

8086

8086

386

X64

8086

8086

386

X64

8086

8086

TEST
TEST
TEST
TEST
TEST
UuDO
UD1
UD2B
UuD2
UD2A
UMOV
UMOV
UMOV
UMOV
UMOV
UMOV
UMOV
UMOV
UMOV
UMOV
UMOV
UMOV
VERR
VERR
VERR
VERW
VERW
VERW
FWAIT
WBINVD
WRSHR
WRMSR
XADD
XADD
XADD
XADD
XADD
XADD
XADD
XADD
XBTS
XBTS
XBTS
XBTS
XCHG
XCHG
XCHG
XCHG
XCHG

rm32, imm
rm64, imm
mem, imm8
mem, imml6
mem, imm32

mem, reg8
reg8, reg8
mem, regl6
regl6, reglb
mem, reg32
reg32,reg32
reg8, mem
reg8, reg8
regl6, mem
regl6, reglb
reg32,mem
reg32,reg32
mem

meml6

reglé6

mem

meml6

reglé6

rm32

mem, reg8

reg8, reg8

mem, regl6
regl6, reglb
mem, reg32
reg32,reg32
mem, regb64
reg64, reg64
regl6, mem
regl6, reglb
reg32,mem
reg32,reg32
reg_ax,reglb6
reg_eax,reg32na
reg_rax,regb64
regl6, reg_ax
reg32na, reg_eax

386

X64

8086

8086

386

186, UNDOC
186, UNDOC
186, UNDOC, ND
186

186, ND

386, UNDOC, ND
386, UNDOC, ND
386, UNDOC, ND
386, UNDOC, ND
386, UNDOC, ND
386, UNDOC, ND
386, UNDOC, ND
386, UNDOC, ND
386, UNDOC, ND
386, UNDOC, ND
386, UNDOC, ND
386, UNDOC, ND
286, PROT
286, PROT
286, PROT
286, PROT
286, PROT
286, PROT
8086
486,PRIV
P6,CYRIXM
PENT, PRIV
486, LOCK

486

486, LOCK

486

486, LOCK

486

X64, LOCK

X64

386, SW, UNDOC, ND
386, UNDOC, ND
386, SD, UNDOC, ND
386, UNDOC, ND
8086

386

X64

8086

386

161

162

XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XLATB
XLAT
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR

regb64, reg_rax
reg_eax, reg_eax
reg8, mem
reg8, reg8
regl6, mem
regl6, reglb
reg32,mem
reg32,reg32
reg64, mem
reg64, reg64
mem, reg8
reg8, reg8
mem, regl6
regl6, reglb
mem, reg32
reg32,reg32
mem, regb64
reg64, reg64

mem, reg8

reg8, reg8

mem, regl6

regl6, reglb

mem, reg32
reg32,reg32

mem, regb64

reg64, reg64
reg8, mem

reg8, reg8

regl6, mem

regl6, reglb
reg32,mem
reg32,reg32
reg64, mem

reg64, reg64
rml6, imm8

rm32, imm8

rm64, imm8
reg_al, imm
reg_ax, sbyteword
reg_ax, imm
reg_eax, sbytedword
reg_eax, imm
reg_rax, sbytedword
reg_rax, imm

rm8, imm

rmlé6, sbyteword
rml6, imm

X64

386, NOLONG
8086, LOCK
8086
8086, LOCK
8086

386, LOCK
386

X64, LOCK
X64

8086, LOCK
8086
8086, LOCK
8086

386, LOCK
386

X64, LOCK
X64

8086

8086
8086, LOCK
8086
8086, LOCK
8086

386, LOCK
386

X64, LOCK
X64

8086

8086

8086

8086

386

386

X64

X64

8086, LOCK
386, LOCK
X64, LOCK
8086
8086, ND
8086

386, ND
386
X64,ND
X64

8086, LOCK
8086, LOCK, ND
8086, LOCK

XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
CMOVcc
CMOVcc
CMOVcc
CMOVcc
CMOVcc
CMOVcc
Jcc
Jcc
Jcc
Jcc
Jcc
Jcc
Jcc
Jcc
Jcc
SETcc
SETcc

B.1.3 Katmai Streaming

ADDPS
ADDSS
ANDNPS
ANDPS
CMPEQPS
CMPEQSS
CMPLEPS
CMPLESS
CMPLTPS
CMPLTSS
CMPNEQPS
CMPNEQSS
CMPNLEPS
CMPNLESS
CMPNLTPS
CMPNLTSS
CMPORDPS
CMPORDSS
CMPUNORDPS
CMPUNORDSS

rm32, sbytedword
rm32, imm

rm64, sbytedword
rm64, imm

mem, imm8

mem, sbytewordl6
mem, imml6

mem, sbytedword32
mem, imm32

rm8, imm

regl6, mem
regl6, reglb
reg32,mem
reg32,reg32
reg64, mem
reg64, reg64
imm|near

imm16 |near
imm32 |near
immé64 |near
imm|short

imm

imm

imm

imm

mem

reg8

SIMD instructions (SSE — a.k.a. KNI, XMM, MMX2)

xmmreqg, xmmrml28
xmmreqg, xmmrm32
xmmreqg, xmmrml28
xmmreqg, xmmrml28
xmmreqg, xmmrml28
xmmreqg, xmmrm32
xmmreqg, xmmrml28
xmmreqg, xmmrm32
xmmreqg, xmmrml28
xmmreqg, xmmrm32
xmmreqg, xmmrml28
xmmreqg, xmmrm32
xmmreqg, xmmrml28
xmmreqg, xmmrm32
xmmreqg, xmmrml28
xmmreqg, xmmrm32
xmmreqg, xmmrml28
xmmreqg, xmmrm32
xmmreqg, xmmrml28
xmmreqg, xmmrm32

386, LOCK, ND
386, LOCK

X64, LOCK, ND
X64, LOCK

8086, LOCK
8086, LOCK, ND
8086, LOCK

386, LOCK, ND
386, LOCK

8086, LOCK, ND, NOLONG
P6

P6

P6

P6

X64

X64

386, BND

386, NOLONG, BND
386, NOLONG, BND
X64, BND
8086, ND, BND
8086, ND, BND
386, ND, BND
8086, ND, BND
8086, BND

386

386

KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE
KATMAT, SSE

163

164

CMPPS
CMPPS
CMPSS
CMPSS
COMISS
CVTPI2PS
CVTPS2PI
CVTSI2SS
CVTSI2SS
CVTSI2SS
CVTSS2SsI
CVTSS2SsI
CVTSS2SsI
CVTSS2SsI
CVTITPS2PI
CVTTSS2SI
CVTTSS2SI
DIVPS
DIVSS
LDMXCSR
MAXPS
MAXSS
MINPS
MINSS
MOVAPS
MOVAPS
MOVHPS
MOVHPS
MOVLHPS
MOVLPS
MOVLPS
MOVHLPS
MOVMSKPS
MOVMSKPS
MOVNTPS
MOVSS
MOVSS
MOVSS
MOVUPS
MOVUPS
MULPS
MULSS
ORPS
RCPPS
RCPSS
RSQRTPS
RSQRTSS
SHUFPS
SQRTPS

xmmreg, mem, imm
xmmreg, xmmreg, imm
xmmreg, mem, imm
xmmreg, xmmreg, imm
xmmreqg, xmmrm32
xmmreqg, mmxrmé64
mmxreg, xmmrmé4
xmmreg, mem
xmmreqg, rm32
xmmreqg, rm64
reg32, xmmreg
reg32,mem
reg64, xmmreg
reg64, mem
mmxreg, Xmmrm
reg32, xmmrm
reg64, xmmrm
xmmreqg, xmmrml28
xmmreqg, xmmrm32
mem32

xmmreqg, xmmrml28
xmmreqg, xmmrm32
xmmreqg, xmmrml28
xmmreqg, xmmrm32
xmmreqg, xmmrml28
xmmrml28, xmmreg
xmmreg, memé64
memé64, xmmreg
Xmmreg, xmmreg
xmmreg, memé64
memé64, xmmreg
Xmmreg, xmmreg
reg32, xmmreg
reg64, xmmreg
meml28, xmmreg
xmmreqg, xmmrm32
mem32, xmmreg
Xmmreg, xmmreg
xmmreqg, xmmrml28
xmmrml28, xmmreg
xmmreqg, xmmrml28
xmmreqg, xmmrm32
xmmreqg, xmmrml28
xmmreqg, xmmrml28
xmmreqg, xmmrm32
xmmreqg, xmmrml28
xmmreqg, xmmrm32
xmmreqg, xmmrml28, imm8
xmmreqg, xmmrml28

KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMATI, SSE, MMX
KATMATI, SSE, MMX
KATMAI, SSE, SD, AR1, ND
KATMAI, SSE, SD, AR1
X64,SSE, AR1
KATMAI, SSE, SD, AR1
KATMAI, SSE, SD, AR1
X64,SSE, SD, AR1
X64,SSE, SD, AR1
KATMATI, SSE, MMX
KATMAI, SSE, SD, AR1
X64,SSE, SD, AR1
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE

X64, SSE

KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE
KATMAI, SSE

SQRTSS xmmreqg, xmmrm32 KATMAI, SSE

STMXCSR mem32 KATMAI, SSE
SUBPS xmmreqg, xmmrml28 KATMAI, SSE
SUBSS xmmreqg, xmmrm32 KATMAI, SSE
UCOMISS xmmreqg, xmmrm32 KATMAI, SSE
UNPCKHPS xmmreqg, xmmrml28 KATMAI, SSE
UNPCKLPS xmmreqg, xmmrml28 KATMAI, SSE
XORPS xmmreqg, xmmrml28 KATMAI, SSE

B.1.4 Introduced in Deschutes but necessary for SSE support

FXRSTOR mem P6,SSE,FPU
FXRSTORG64 mem X64,SSE, FPU
FXSAVE mem P6,SSE, FPU
FXSAVEG64 mem X64,SSE, FPU
B.1.5 XSAVE group (AVX and extended state)
XGETBV NEHALEM
XSETBV NEHALEM, PRIV
XSAVE mem NEHALEM
XSAVE64 mem LONG, NEHALEM
XSAVEC mem FUTURE
XSAVEC64 mem LONG, FUTURE
XSAVEOPT mem FUTURE
XSAVEOPT64 mem LONG, FUTURE
XSAVES mem FUTURE
XSAVES64 mem LONG, FUTURE
XRSTOR mem NEHALEM
XRSTORG64 mem LONG, NEHALEM
XRSTORS mem FUTURE
XRSTORS64 mem LONG, FUTURE

B.1.6 Generic memory operations

PREFETCHNTA mem8 KATMAT
PREFETCHTO mem8 KATMAT
PREFETCHT1 mem8 KATMAT
PREFETCHT2 mem8 KATMAT
SFENCE KATMAT

B.1.7 New MMX instructions introduced in Katmai

MASKMOVQ mmxreg, mmxreg KATMAT, MMX
MOVNTQ mem, mmxreg KATMATI, MMX
PAVGB mmxreg, mmxrm KATMATI, MMX
PAVGW mmxreg, mmxrm KATMATI, MMX
PEXTRW reg32, mmxreqg, imm KATMATI, MMX
PINSRW mmxreg, mem, imm KATMATI, MMX
PINSRW mmxreg, rml6, imm KATMATI, MMX
PINSRW mmxreg, reg32, imm KATMATI, MMX
PMAXSW mmxreg, mmxrm KATMATI, MMX

165

PMAXUB
PMINSW
PMINUB
PMOVMSKB
PMULHUW
PSADBW
PSHUFW

PF2IW
PFNACC
PFPNACC
PI2FW
PSWAPD

B.1.9 Willamette SSE2 Cacheability Instructions

MASKMOVDQU
CLFLUSH
MOVNTDQ
MOVNTI
MOVNTI
MOVNTPD
LFENCE
MFENCE

mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
reg32, mmxreg
mmxreg, mmxrm
mmxreg, mmxrm

mmxreg, mmxrm, imm

B.1.8 AMD Enhanced 3DNow! (Athlon) instructions

mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm
mnxreg, mmxrm

Xmmreg, xmmreg
mem

mem, xmmreg
mem, reg32
mem, regb64
mem, xmmreg

KATMAT, MMX
KATMAT, MMX
KATMAT, MMX
KATMAT, MMX
KATMAT, MMX
KATMAT, MMX
KATMAT, MMX2

PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW

WILLAMETTE, SSE2
WILLAMETTE, SSE2

WILLAMETTE, SSE2, SO

WILLAMETTE, SD
X64

WILLAMETTE, SSE2, SO

WILLAMETTE, SSE2
WILLAMETTE, SSE2

B.1.10 Willamette MMX instructions (SSE2 SIMD Integer Instructions)

166

MOVD
MOVD
MOVD
MOVD
MOVDQA
MOVDQA
MOVDQA
MOVDQA
MOVDQU
MOVDQU
MOVDQU
MOVDQU
MOVDQ2Q
MOVQ
MOVQ
MOVQ
MOVQ
MOVQ
MOVQ
MOVQ2DQ
PACKSSWB
PACKSSDW

mem, xmmreg
xmmreg, mem
xmmreqg, rm32
rm32, xmmreg
xXmmreg, xmmreg
mem, xmmreg
xmmreg, mem
xXmmreg, xmmreg
xXmmreg, xmmreg
mem, xmmreg
xmmreg, mem
xXmmreg, xmmreg
mmxreg, xmmreg
xXmmreg, xmmreg
xXmmreg, xmmreg
mem, xmmreg
xmmreg, mem
xmmreqg, rm64
rmé64, xmmreg
Xmmreg, mmxreg
Xmmreg, xmmrm
Xmmreg, xmmrm

WILLAMETTE, SSE2, SD
WILLAMETTE, SSE2, SD

WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2

WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO

WILLAMETTE, SSE2
WILLAMETTE, SSE2

WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO

WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2
X64,SSE2

X64,SSE2

WILLAMETTE, SSE2

WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO

PACKUSWB
PADDB
PADDW
PADDD
PADDQ
PADDQ
PADDSB
PADDSW
PADDUSB
PADDUSW
PAND
PANDN
PAVGB
PAVGW
PCMPEQB
PCMPEQW
PCMPEQD
PCMPGTB
PCMPGTW
PCMPGTD
PEXTRW
PINSRW
PINSRW
PINSRW
PINSRW
PMADDWD
PMAXSW
PMAXUB
PMINSW
PMINUB
PMOVMSKB
PMULHUW
PMULHW
PMULLW
PMULUDQ
PMULUDQ
POR
PSADBW
PSHUFD
PSHUFD
PSHUFHW
PSHUFHW
PSHUFLW
PSHUFLW
PSLLDQ
PSLLW
PSLLW
PSLLD
PSLLD

Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
mmxreg, mmxrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
reg32, xmmreqg, imm
xmmreg, regl6, imm
xmmreg, reg32, imm
xmmreg, mem, imm
xmmreg, meml6, imm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
reg32, xmmreg
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
mmxreg, mmxrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
xmmreg, xmmreqg, imm
xmmreg, mem, imm
xmmreg, xmmreqg, imm
xmmreg, mem, imm
xmmreg, xmmreqg, imm
xmmreg, mem, imm
xmmreqg, imm
Xmmreg, xmmrm
xmmreqg, imm
Xmmreg, xmmrm
xmmreqg, imm

WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, MMX
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2, ND
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE22
WILLAMETTE, SSE2
WILLAMETTE, SSE22
WILLAMETTE, SSE2
WILLAMETTE, SSE22
WILLAMETTE, SSE2,AR1
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2,AR1
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2,AR1

167

PSLLQ
PSLLQ
PSRAW
PSRAW
PSRAD
PSRAD
PSRLDQ
PSRLW
PSRLW
PSRLD
PSRLD
PSRLQ
PSRLQ
PSUBB
PSUBW
PSUBD
PSUBQ
PSUBQ
PSUBSB
PSUBSW
PSUBUSB
PSUBUSW
PUNPCKHBW
PUNPCKHWD
PUNPCKHDQ
PUNPCKHQDQ
PUNPCKLBW
PUNPCKLWD
PUNPCKLDQ
PUNPCKLQDQ
PXOR

Xmmreg, xmmrm
xmmreqg, imm

Xmmreg, xmmrm
xmmreqg, imm

Xmmreg, xmmrm
xmmreqg, imm

xmmreqg, imm

Xmmreg, xmmrm
xmmreqg, imm

Xmmreg, xmmrm
xmmreqg, imm

Xmmreg, xmmrm
xmmreqg, imm

Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
mmxreg, mmxrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm

WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2,AR1
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2,AR1
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2,AR1
WILLAMETTE, SSE2,AR1
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2,AR1
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2,AR1
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2,AR1
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO

B.1.11 Willamette Streaming SIMD instructions (SSE2)

168

ADDPD
ADDSD
ANDNPD
ANDPD
CMPEQPD
CMPEQSD
CMPLEPD
CMPLESD
CMPLTPD
CMPLTSD
CMPNEQPD
CMPNEQSD
CMPNLEPD
CMPNLESD
CMPNLTPD
CMPNLTSD

Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm

WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2

CMPORDPD
CMPORDSD
CMPUNORDPD
CMPUNORDSD
CMPPD
CMPSD
COMISD
CVTDQ2PD
CVTDQ2PS
CVTPD2DQ
CVTPD2PI
CVTPD2PS
CVTPIZ2PD
CVTPS2DQ
CVTPS2PD
CVTSD2SI
CVTSD2SI
CVTSD2SI
CVTSD2SI
CVTSD2SS
CVTSI2SD
CVTSI2SD
CVTSI2SD
CVTSS2SD
CVTTPD2PI
CVTTPD2DQ
CVTTPS2DQ
CVTTSD2SI
CVTTSD2SI
CVTTSD2SI
CVTTSD2SI
DIVPD
DIVSD
MAXPD
MAXSD
MINPD
MINSD
MOVAPD
MOVAPD
MOVAPD
MOVAPD
MOVHPD
MOVHPD
MOVLPD
MOVLPD
MOVMSKPD
MOVMSKPD
MOVSD
MOVSD

Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm

xmmreqg, xmmrml28, imm8
xmmreqg, xmmrml28, imm8

Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
mmxreg, Xmmrm
Xmmreg, xmmrm
Xmmreg, mmxrm
Xmmreg, xmmrm
Xmmreg, xmmrm
reg32, xmmreg
reg32,mem
reg64, xmmreg
reg64, mem
Xmmreg, xmmrm
xmmreg, mem
xmmreqg, rm32
xmmreqg, rm64
Xmmreg, xmmrm
mmxreg, Xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
reg32, xmmreg
reg32,mem
reg64, xmmreg
reg64, mem
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmreg
xXmmreg, xmmreg
mem, xmmreg
xmmreg, mem
mem, xmmreg
xmmreg, mem
memé64, xmmreg
xmmreg, memé64
reg32, xmmreg
regb64, xmmreg
Xmmreg, xmmreg
Xmmreg, xmmreg

WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2, AR1
WILLAMETTE, SSE2, AR1
X64,SSE2,AR1
X64,SSE2,AR1
WILLAMETTE, SSE2

WILLAMETTE, SSE2, SD, AR1, ND
WILLAMETTE, SSE2, SD, AR1

X64,SSE2, AR1
WILLAMETTE, SSE2, SD
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, AR1
WILLAMETTE, SSE2, AR1
X64,SSE2,AR1
X64,SSE2,AR1
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2
X64, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2

169

MOVSD
MOVSD
MOVUPD
MOVUPD
MOVUPD
MOVUPD
MULPD
MULSD
ORPD
SHUFPD
SHUFPD
SQRTPD
SQRTSD
SUBPD
SUBSD
UCOMISD
UNPCKHPD
UNPCKLPD
XORPD

memé64, xmmreg
xmmreg, memé64
xXmmreg, xmmreg
xXmmreg, xmmreg
mem, xmmreg
xmmreg, mem
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
xmmreg, xmmreg, imm
xmmreg, mem, imm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
Xmmreg, xmmrm
xmmreqg, xmmrml28
xmmreqg, xmmrml28
xmmreqg, xmmrml28

B.1.12 Prescott New Instructions (SSE3)

ADDSUBPD
ADDSUBPS
HADDPD
HADDPS
HSUBPD
HSUBPS
LDDQU
MOVDDUP
MOVSHDUP
MOVSLDUP

Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, mem

Xmmreg, Xxmmrm
Xmmreg, Xxmmrm
Xmmreg, Xxmmrm

B.1.13 VMX/SVM Instructions

170

CLGI
STGI
VMCALL
VMCLEAR
VME'UNC
VMLAUNCH
VMLOAD
VMMCALL
VMPTRLD
VMPTRST
VMREAD
VMREAD
VMRESUME
VMRUN
VMSAVE

mem

mem
mem

rm32, reg32
rm64, reg64

WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2, SO
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2
WILLAMETTE, SSE2

PRESCOTT, SSE3, SO
PRESCOTT, SSE3, SO
PRESCOTT, SSE3, SO
PRESCOTT, SSE3, SO
PRESCOTT, SSE3, SO
PRESCOTT, SSE3, SO
PRESCOTT, SSE3, SO
PRESCOTT, SSE3

PRESCOTT, SSE3

PRESCOTT, SSE3

VMX, AMD
VMX, AMD

VMX

VMX

VMX

VMX

VMX, AMD

VMX, AMD

VMX

VMX

VMX, NOLONG, SD
X64, VMX

VMX

VMX, AMD

VMX, AMD

VMWRITE
VMWRITE
VMXOFF
VMXON

INVEPT
INVEPT
INVVPID
INVVPID

PABSB
PABSB
PABSW
PABSW
PABSD
PABSD
PALIGNR
PALIGNR
PHADDW
PHADDW
PHADDD
PHADDD
PHADDSW
PHADDSW
PHSUBW
PHSUBW
PHSUBD
PHSUBD
PHSUBSW
PHSUBSW
PMADDUBSW
PMADDUBSW
PMULHRSW
PMULHRSW
PSHUFB
PSHUFB
PSIGNB
PSIGNB
PSIGNW
PSIGNW
PSIGND
PSIGND

B.1.16 AMD SSE4A

EXTRQ
EXTRQ

reg32, rm32
reg64, rm64

mem

B.1.14 Extended Page Tables VMX instructions

reg32,mem
reg64, mem
reg32,mem
reg64, mem

B.1.15 Tejas New Instructions (SSSE3)

mnxreg, mmxrm
Xmmreg, Xxmmrm
mnxreg, mmxrm
Xmmreg, Xxmmrm
mnxreg, mmxrm
Xmmreg, Xxmmrm

mmxreg, mmxrm, imm
Xmmreqg, Xmmrm, imm

mnxreg, mmxrm
Xmmreg, Xxmmrm
mnxreg, mmxrm
Xmmreg, Xxmmrm
mnxreg, mmxrm
Xmmreg, Xxmmrm
mnxreg, mmxrm
Xmmreg, Xxmmrm
mnxreg, mmxrm
Xmmreg, Xxmmrm
mnxreg, mmxrm
Xmmreg, Xxmmrm
mnxreg, mmxrm
Xmmreg, Xxmmrm
mnxreg, mmxrm
Xmmreg, Xxmmrm
mnxreg, mmxrm
Xmmreg, Xxmmrm
mnxreg, mmxrm
Xmmreg, Xxmmrm
mnxreg, mmxrm
Xmmreg, Xxmmrm
mnxreg, mmxrm
Xmmreg, Xxmmrm

xmmreg, imm, imm

xXxmmreg, xmmreg

VMX, NOLONG, SD
X64, VMX

VMX

VMX

VMX, SO, NOLONG
VMX, SO, LONG
VMX, SO, NOLONG
VMX, SO, LONG

SSSE3, MMX
SSSE3
SSSE3, MMX
SSSE3
SSSE3, MMX
SSSE3
SSSE3, MMX
SSSE3
SSSE3, MMX
SSSE3
SSSE3, MMX
SSSE3
SSSE3, MMX
SSSE3
SSSE3, MMX
SSSE3
SSSE3, MMX
SSSE3
SSSE3, MMX
SSSE3
SSSE3, MMX
SSSE3
SSSE3, MMX
SSSE3
SSSE3, MMX
SSSE3
SSSE3, MMX
SSSE3
SSSE3, MMX
SSSE3
SSSE3, MMX
SSSE3

SSE4A, AMD
SSE4A, AMD

171

INSERTQ
INSERTQ
MOVNTSD
MOVNTSS

xmmreg, xmmreg, imm, imm

xXmmreg, xmmreg
mem, xmmreg
mem, xmmreg

B.1.17 New instructions in Barcelona

LZCNT
LZCNT
LZCNT

regl6, rml6
reg32, rm32
reg64, rmé64

B.1.18 Penryn New Instructions (SSE4.1)

172

BLENDPD
BLENDPS
BLENDVPD
BLENDVPD
BLENDVPS
BLENDVPS
DPPD
DPPS
EXTRACTPS
EXTRACTPS
INSERTPS
MOVNTDQA
MPSADBW
PACKUSDW
PBLENDVB
PBLENDVB
PBLENDW
PCMPEQQ
PEXTRB
PEXTRB
PEXTRB
PEXTRD
PEXTRQ
PEXTRW
PEXTRW
PEXTRW
PHMINPOSUW
PINSRB
PINSRB
PINSRB
PINSRD
PINSRD
PINSRQ
PINSRQ
PMAXSB
PMAXSD
PMAXUD

xmmreqg, xmmrm, imm
xmmreqg, xmmrm, imm
xmmreqg, xmmrm, xmmO0
Xmmreqg, Xmmrm
xmmreqg, xmmrm, xmmO0
Xmmreqg, Xmmrm
xmmreqg, xmmrm, imm
xmmreqg, xmmrm, imm
rm32, xmmreg, imm
reg64, xmmreqg, imm
xmmreqg, xmmrm, imm
xmmreg, meml28
xmmreqg, xmmrm, imm
Xmmreqg, Xmmrm
xmmreqg, xmmrm, xmmO0
Xmmreqg, Xmmrm
xmmreqg, xmmrm, imm
Xmmreqg, Xmmrm
reg32, xmmreqg, imm
mem8, xmmreg, imm
reg64, xmmreqg, imm
rm32, xmmreg, imm
rm64, xmmreqg, imm
reg32, xmmreqg, imm
meml 6, xmmreg, imm
reg64, xmmreqg, imm
Xmmreqg, Xmmrm
xmmreg, mem, imm
xmmreg, rm8, imm
xmmreg, reg32, imm
xmmreg, mem, imm
xmmreg, rm32, imm
xmmreg, mem, imm
xmmreg, rm64, imm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm

SSE4A, AMD
SSE4A, AMD
SSE4A, AMD

SSE4A, AMD, SD

P6, AMD
P6, AMD
X64, AMD

SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41,X64
SSE41, SD
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41,X64
SSE41
SSE41,X64
SSE41
SSE41
SSE41,X64
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41,X64
SSE41,X64
SSE41
SSE41
SSE41

PMAXUW
PMINSB
PMINSD
PMINUD
PMINUW
PMOVSXBW
PMOVSXBD
PMOVSXBQ
PMOVSXWD
PMOVSXWQ
PMOVSXDQ
PMOVZXBW
PMOVZXBD
PMOVZXBQ
PMOVZXWD
PMOVZXWQ
PMOVZXDQ
PMULDQ
PMULLD
PTEST
ROUNDPD
ROUNDPS
ROUNDSD
ROUNDSS

Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
Xmmreqg, Xmmrm
xmmreqg, xmmrm, imm
xmmreqg, xmmrm, imm
xmmreqg, xmmrm, imm
xmmreqg, xmmrm, imm

B.1.19 Nehalem New Instructions (SSE4.2)

CRC32
CRC32
CRC32
CRC32
CRC32
PCMPESTRI
PCMPESTRM
PCMPISTRI
PCMPISTRM
PCMPGTQ
POPCNT
POPCNT
POPCNT

B.1.20 Intel SMX

GETSEC

reg32, rm8
reg32,rml6
reg32, rm32
reg64, rm8

reg64, rmé64
xmmreqg, xmmrm, imm
xmmreqg, xmmrm, imm
xmmreqg, xmmrm, imm
xmmreqg, xmmrm, imm
Xmmreqg, Xmmrm
regl6, rmlé6
reg32, rm32
reg64, rm64

B.1.21 Geode (Cyrix) 3DNow! additions

PFRCPV
PFRSQRTV

mnxreg, mmxrm
mnxreg, mmxrm

SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41,SD
SSE41, SW
SSE41
SSE41,SD
SSE41
SSE41
SSE41, SD
SSE41, SW
SSE41
SSE41, SD
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41

SSE42
SSE42
SSE42
SSE42,X64
SSE42,X64
SSE42
SSE42
SSE42
SSE42
SSE42
NEHALEM, SW
NEHALEM, SD
NEHALEM, X64

KATMAT

PENT, 3DNOW, CYRIX
PENT, 3DNOW, CYRIX

173

B.1.22 Intel new instructions in ??7?

MOVBE regl6,memlb6 NEHALEM
MOVBE reg32,mem32 NEHALEM
MOVBE reg64, memé64 NEHALEM
MOVBE meml6, reglb NEHALEM
MOVBE mem32, reg32 NEHALEM
MOVBE memé64, reg64 NEHALEM
B.1.23 Intel AES instructions
AESENC xmmreqg, xmmrml28 SSE, WESTMERE
AESENCLAST xmmreqg, xmmrml28 SSE, WESTMERE
AESDEC xmmreqg, xmmrml28 SSE, WESTMERE
AESDECLAST xmmreqg, xmmrml28 SSE, WESTMERE
AESIMC xmmreqg, xmmrml28 SSE, WESTMERE
AESKEYGENASSIST xmmreg,xmmrml28, imm8 SSE, WESTMERE

B.1.24 Intel AVX AES instructions

VAESENC xmmreqg, xmmreg*, xmmrml28 AVX, SANDYBRIDGE
VAESENCLAST xmmreqg, xmmreg*, xmmrml28 AVX, SANDYBRIDGE
VAESDEC xmmreqg, xmmreg*, xmmrml28 AVX, SANDYBRIDGE
VAESDECLAST xmmreqg, xmmreg*, xmmrml28 AVX, SANDYBRIDGE
VAESIMC xmmreqg, xmmrml28 AVX, SANDYBRIDGE

VAESKEYGENASSIST xmmreg, xmmrml28, imm8

B.1.25 Intel AVX instructions

AVX, SANDYBRIDGE

VADDPD xmmreqg, xmmreg*, xmmrml28 AVX, SANDYBRIDGE
VADDPD ymmreg, ymmreg*, ymmrm256 AVX, SANDYBRIDGE
VADDPS xmmreqg, xmmreg*, xmmrml28 AVX, SANDYBRIDGE
VADDPS ymmreg, ymmreg*, ymmrm256 AVX, SANDYBRIDGE
VADDSD xmmreg, xmmreg*, xmmrmé4 AVX, SANDYBRIDGE
VADDSS xmmreqg, xmmreg*, xmmrm32 AVX, SANDYBRIDGE
VADDSUBPD xmmreqg, xmmreg*, xmmrml28 AVX, SANDYBRIDGE
VADDSUBPD ymmreg, ymmreg*, ymmrm256 AVX, SANDYBRIDGE
VADDSUBPS xmmreqg, xmmreg*, xmmrml28 AVX, SANDYBRIDGE
VADDSUBPS ymmreg, ymmreg*, ymmrm256 AVX, SANDYBRIDGE
VANDPD xmmreqg, xmmreg*, xmmrml28 AVX, SANDYBRIDGE
VANDPD ymmreg, ymmreg*, ymmrm256 AVX, SANDYBRIDGE
VANDPS xmmreqg, xmmreg*, xmmrml28 AVX, SANDYBRIDGE
VANDPS ymmreg, ymmreg*, ymmrm256 AVX, SANDYBRIDGE
VANDNPD xmmreqg, xmmreg*, xmmrml28 AVX, SANDYBRIDGE
VANDNPD ymmreg, ymmreg*, ymmrm256 AVX, SANDYBRIDGE
VANDNPS xmmreqg, xmmreg*, xmmrml28 AVX, SANDYBRIDGE
VANDNPS ymmreg, ymmreg*, ymmrm256 AVX, SANDYBRIDGE
VBLENDPD xmmreqg, xmmreg*, xmmrml28, imm8 AVX, SANDYBRIDGE
VBLENDPD ymmreg, ymmreg*, ymmrm256, imm8 AVX, SANDYBRIDGE
VBLENDPS xmmreqg, xmmreg*, xmmrml28, imm8 AVX, SANDYBRIDGE
VBLENDPS ymmreg, ymmreg*, ymmrm256, imm8 AVX, SANDYBRIDGE
VBLENDVPD xmmreqg, xmmreg*, xmmrml28, xmmreg AVX, SANDYBRIDGE

174

VBLENDVPD
VBLENDVPS
VBLENDVPS
VBROADCASTSS
VBROADCASTSS
VBROADCASTSD
VBROADCASTF128
VCMPEQ_OSPD
VCMPEQ_OSPD
VCMPEQPD
VCMPEQPD
VCMPLT_OSPD
VCMPLT_OSPD
VCMPLTPD
VCMPLTPD
VCMPLE_OSPD
VCMPLE_OSPD
VCMPLEPD
VCMPLEPD
VCMPUNORD_QPD
VCMPUNORD_QPD
VCMPUNORDPD
VCMPUNORDPD
VCMPNEQ_UQPD
VCMPNEQ_UQPD
VCMPNEQPD
VCMPNEQPD
VCMPNLT_USPD
VCMPNLT_USPD
VCMPNLTPD
VCMPNLTPD
VCMPNLE_USPD
VCMPNLE_USPD
VCMPNLEPD
VCMPNLEPD
VCMPORD_QPD
VCMPORD_QPD
VCMPORDPD
VCMPORDPD
VCMPEQ_UQPD
VCMPEQ_UQPD
VCMPNGE_USPD
VCMPNGE_USPD
VCMPNGEPD
VCMPNGEPD
VCMPNGT_USPD
VCMPNGT_USPD
VCMPNGTPD
VCMPNGTPD

ymmreg, ymmreg*, ymmrm256, ymmreg AVX, SANDYBRIDGE
xmmreqg, xmmreg*, xmmrml28, xmmreg AVX, SANDYBRIDGE
ymmreg, ymmreg*, ymmrm256, ymmreg AVX, SANDYBRIDGE

xmmreqg, mem32

ymmreg, mem32

ymmreg, mem64

ymmreg, meml28

xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

175

176

VCMPFALSE_OQPD
VCMPFALSE_OQPD
VCMPFALSEPD
VCMPFALSEPD
VCMPNEQ_OQPD
VCMPNEQ_OQPD
VCMPGE_OSPD
VCMPGE_OSPD
VCMPGEPD
VCMPGEPD
VCMPGT_OSPD
VCMPGT_OSPD
VCMPGTPD
VCMPGTPD
VCMPTRUE_UQPD
VCMPTRUE_UQPD
VCMPTRUEPD
VCMPTRUEPD
VCMPEQ_OSPD
VCMPEQ_OSPD
VCMPLT_OQPD
VCMPLT_OQPD
VCMPLE_OQPD
VCMPLE_OQPD
VCMPUNORD_SPD
VCMPUNORD_SPD
VCMPNEQ_USPD
VCMPNEQ_USPD
VCMPNLT_UQPD
VCMPNLT_UQPD
VCMPNLE_UQPD
VCMPNLE_UQPD
VCMPORD_SPD
VCMPORD_SPD
VCMPEQ_USPD
VCMPEQ_USPD
VCMPNGE_UQPD
VCMPNGE_UQPD
VCMPNGT_UQPD
VCMPNGT_UQPD
VCMPFALSE_OSPD
VCMPFALSE_OSPD
VCMPNEQ_OSPD
VCMPNEQ_OSPD
VCMPGE_OQPD
VCMPGE_OQPD
VCMPGT_OQPD
VCMPGT_OQPD
VCMPTRUE_USPD

xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

VCMPTRUE_USPD
VCMPPD

VCMPPD
VCMPEQ_OSPS
VCMPEQ_OSPS
VCMPEQPS
VCMPEQPS
VCMPLT_OSPS
VCMPLT_OSPS
VCMPLTPS
VCMPLTPS
VCMPLE_OSPS
VCMPLE_OSPS
VCMPLEPS
VCMPLEPS
VCMPUNORD_QPS
VCMPUNORD_QPS
VCMPUNORDPS
VCMPUNORDPS
VCMPNEQ_UQPS
VCMPNEQ_UQPS
VCMPNEQPS
VCMPNEQPS
VCMPNLT_USPS
VCMPNLT_USPS
VCMPNLTPS
VCMPNLTPS
VCMPNLE_USPS
VCMPNLE_USPS
VCMPNLEPS
VCMPNLEPS
VCMPORD_QPS
VCMPORD_QPS
VCMPORDPS
VCMPORDPS
VCMPEQ_UQPS
VCMPEQ_UQPS
VCMPNGE_USPS
VCMPNGE_USPS
VCMPNGEPS
VCMPNGEPS
VCMPNGT_USPS
VCMPNGT_USPS
VCMPNGTPS
VCMPNGTPS
VCMPFALSE_OQPS
VCMPFALSE_OQPS
VCMPFALSEPS
VCMPFALSEPS

ymmreg, ymmreg*, ymmrm256

xmmreqg, xmmreg*, xmmrml28, imm8 AVX, SANDYBRIDGE
ymmreg, ymmreg*, ymmrm256, imm8 AVX, SANDYBRIDGE

xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

177

178

VCMPNEQ_OQPS
VCMPNEQ_OQPS
VCMPGE_OSPS
VCMPGE_OSPS
VCMPGEPS
VCMPGEPS
VCMPGT_OSPS
VCMPGT_OSPS
VCMPGTPS
VCMPGTPS
VCMPTRUE_UQPS
VCMPTRUE_UQPS
VCMPTRUEPS
VCMPTRUEPS
VCMPEQ_OSPS
VCMPEQ_OSPS
VCMPLT_OQPS
VCMPLT_OQPS
VCMPLE_OQPS
VCMPLE_OQPS
VCMPUNORD_SPS
VCMPUNORD_SPS
VCMPNEQ_USPS
VCMPNEQ_USPS
VCMPNLT_UQPS
VCMPNLT_UQPS
VCMPNLE_UQPS
VCMPNLE_UQPS
VCMPORD_SPS
VCMPORD_SPS
VCMPEQ_USPS
VCMPEQ_USPS
VCMPNGE_UQPS
VCMPNGE_UQPS
VCMPNGT_UQPS
VCMPNGT_UQPS
VCMPFALSE_OSPS
VCMPFALSE_OSPS
VCMPNEQ_OSPS
VCMPNEQ_OSPS
VCMPGE_OQPS
VCMPGE_OQPS
VCMPGT_OQPS
VCMPGT_OQPS
VCMPTRUE_USPS
VCMPTRUE_USPS
VCMPPS

VCMPPS
VCMPEQ_0OSSD

xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256

xmmreqg, xmmreg*, xmmrml28, imm8 AVX, SANDYBRIDGE
ymmreg, ymmreg*, ymmrm256, imm8 AVX, SANDYBRIDGE

xmmreqg, xmmreg*, xmmrmé4

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

VCMPEQSD
VCMPLT_OSSD
VCMPLTSD
VCMPLE_OSSD
VCMPLESD
VCMPUNORD_QSD
VCMPUNORDSD
VCMPNEQ_UQSD
VCMPNEQSD
VCMPNLT_USSD
VCMPNLTSD
VCMPNLE_USSD
VCMPNLESD
VCMPORD_QSD
VCMPORDSD
VCMPEQ_UQSD
VCMPNGE_USSD
VCMPNGESD
VCMPNGT_USSD
VCMPNGTSD
VCMPFALSE_0OQSD
VCMPFALSESD
VCMPNEQ_0QSD
VCMPGE_0OSSD
VCMPGESD
VCMPGT_OSSD
VCMPGTSD
VCMPTRUE_UQSD
VCMPTRUESD
VCMPEQ_0OSSD
VCMPLT_0OQSD
VCMPLE_0OQSD
VCMPUNORD_SSD
VCMPNEQ_USSD
VCMPNLT_UQSD
VCMPNLE_UQSD
VCMPORD_SSD
VCMPEQ_USSD
VCMPNGE_UQSD
VCMPNGT_UQSD
VCMPFALSE_0OSSD
VCMPNEQ_OSSD
VCMPGE_0OQSD
VCMPGT_0OQSD
VCMPTRUE_USSD
VCMP SD
VCMPEQ_OSSS
VCMPEQSS
VCMPLT_OSSS

xmmreqg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

,imm8 AVX, SANDYBRIDGE

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

179

180

VCMPLTSS
VCMPLE_OSSS
VCMPLESS
VCMPUNORD_QSS
VCMPUNORDSS
VCMPNEQ_UQSS
VCMPNEQSS
VCMPNLT_USSS
VCMPNLTSS
VCMPNLE_USSS
VCMPNLESS
VCMPORD_QSS
VCMPORDSS
VCMPEQ_UQSS
VCMPNGE_USSS
VCMPNGESS
VCMPNGT_USSS
VCMPNGTSS
VCMPFALSE_0QSS
VCMPFALSESS
VCMPNEQ_0QSS
VCMPGE_OSSS
VCMPGESS
VCMPGT_OSSS
VCMPGTSS
VCMPTRUE_UQSS
VCMPTRUESS
VCMPEQ_O0SSS
VCMPLT_0OQSS
VCMPLE_OQSS
VCMPUNORD_SSS
VCMPNEQ_USSS
VCMPNLT_UQSS
VCMPNLE_UQSS
VCMPORD_SSS
VCMPEQ_USSS
VCMPNGE_UQSS
VCMPNGT_UQSS
VCMPFALSE_0OSSS
VCMPNEQ_0OSSS
VCMPGE_0QSS
VCMPGT_0OQSS
VCMPTRUE_USSS
VCMPSS
VCOMISD
VCOMISS
VCVTDQ2PD
VCVTDQ2PD
VCVTDQ2PS

xmmreqg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrmé4

xmmreqg, xmmreg*, xmmrmé64, imm8 AVX, SANDYBRIDGE

xmmreqg, xmmrmé64
xmmreqg, xmmrm32
xmmreqg, xmmrmé64
ymmreqg, xmmrml28
xmmreqg, xmmrml28

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

VCVTDQ2PS
VCVTPD2DQ
VCVTPD2DQ
VCVTPD2DQ
VCVTPD2DQ
VCVTPD2PS
VCVTPD2PS
VCVTPD2PS
VCVTPD2PS
VCVTPS2DQ
VCVTPS2DQ
VCVTPS2PD
VCVTPS2PD
VCVTSD2SI
VCVTSD2SI
VCVTSD2SS
VCVTSI2SD
VCVTSI2SD
VCVTSI2SD
VCVTSI2SS
VCVTSI2SS
VCVTSI2SS
VCVTSS2SD
VCVTSS2SI
VCVTSS2SI
VCVTTPD2DQ
VCVTTPD2DQ
VCVTTPD2DQ
VCVTTPD2DQ
VCVTTPS2DQ
VCVTTPS2DQ
VCVTTSD2SI
VCVTTSD2SI
VCVTTSS2SI
VCVTTSS2SI
VDIVPD
VDIVPD
VDIVPS
VDIVPS
VDIVSD
VDIVSS
VDPPD
VDPPS
VDPPS

VEXTRACTF128

VEXTRACTPS
VHADDPD
VHADDPD
VHADDPS

ymmreg, ymmrm256
xXmmreg, xmmreg

xmmreg, meml28

xmmreg, ymmreg

xmmreg, mem256

xXmmreg, xmmreg

xmmreg, meml28

xmmreg, ymmreg

xmmreg, mem256

xmmreqg, xmmrml28
ymmreg, ymmrm256
xmmreqg, xmmrmé64

ymmreqg, xmmrml28

reg32, xmmrm64

reg64, xmmrm64

xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, rm32
xmmreg, xmmreg*, mem32
xmmreqg, xmmreg*, rmé64
xmmreqg, xmmreg*, rm32
xmmreg, xmmreg*, mem32
xmmreqg, xmmreg*, rmé64
xmmreqg, xmmreg*, xmmrm32
reg32, xmmrm32

reg64, xmmrm32

Xmmreg, xmmreg

xmmreg, meml28

xmmreg, ymmreg

xmmreg, mem256

xmmreqg, xmmrml28
ymmreg, ymmrm256

reg32, xmmrm64

reg64, xmmrm64

reg32, xmmrm32

reg64, xmmrm32

xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrm32

xmmreqg, xmmreg*, xmmrml28, imm8 AVX, SANDYBRIDGE
xmmreqg, xmmreg*, xmmrml28, imm8 AVX, SANDYBRIDGE
ymmreg, ymmreg*, ymmrm256, imm8 AVX, SANDYBRIDGE

xmmrml28, ymmreg, imm8
rm32, xmmreqg, imm8
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, SO

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, SY

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, SO

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, SY

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, SD
AVX, SANDYBRIDGE, ND, SD
AVX, SANDYBRIDGE, LONG
AVX, SANDYBRIDGE, SD

AVX, SANDYBRIDGE, ND, SD
AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, SO

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, SY

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

181

182

VHADDPS
VHSUBPD
VHSUBPD
VHSUBPS
VHSUBPS
VINSERTF128
VINSERTPS
VLDDQU
VLDQQU
VLDDQU
VLDMXCSR
VMASKMOVDQU
VMASKMOVPS
VMASKMOVPS
VMASKMOVPS
VMASKMOVPS
VMASKMOVPD
VMASKMOVPD
VMASKMOVPD
VMASKMOVPD
VMAXPD
VMAXPD
VMAXPS
VMAXPS
VMAXSD
VMAXSS
VMINPD
VMINPD
VMINPS
VMINPS
VMINSD
VMINSS
VMOVAPD
VMOVAPD
VMOVAPD
VMOVAPD
VMOVAPS
VMOVAPS
VMOVAPS
VMOVAPS
VMOVD
VMOVD
VMOVQ
VMOVQ
VMOVQ
VMOVQ
VMOVDDUP
VMOVDDUP
VMOVDQA

ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256

ymmreg, ymmreqg, xmmrml28, imm8 AVX, SANDYBRIDGE
xmmreqg, xmmreg*, xmmrm32, imm8 AVX, SANDYBRIDGE

xmmreg, meml28

ymmreg, mem256

ymmreg, mem256

mem32

xXmmreg, xmmreg

xmmreqg, xmmreqg, meml28
ymmreg, ymmreqg, mem256
meml28, xmmreg, Xxmmreg
mem256, ymmreg, ymmreg
xmmreqg, xmmreqg, meml28
ymmreg, ymmreqg, mem256
meml28, xmmreg, Xxmmreg
mem256, ymmreg, ymmreg
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrm32
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrm32
xmmreqg, xmmrml28
xmmrml28, xmmreg

ymmreqg, ymmrm256
ymmrm256, ymmreg

xmmreqg, xmmrml28
xmmrml28, xmmreg

ymmreqg, ymmrm256
ymmrm256, ymmreg

xmmreqg, rm32

rm32, xmmreg

xmmreqg, xmmrmé64

xmmrmé64, xmmreg

xmmreqg, rmé64

rmé64, xmmreg

xmmreqg, xmmrmé64

ymmreg, ymmrm256

xmmreqg, xmmrml28

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, SO
AVX, SANDYBRIDGE, SY

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG
AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

VMOVDQA
VMOVQQA
VMOVQQA
VMOVDQA
VMOVDQA
VMOVDQU
VMOVDQU
VMOVQQU
VMOVQQU
VMOVDQU
VMOVDQU
VMOVHLPS
VMOVHPD
VMOVHPD
VMOVHPS
VMOVHPS
VMOVLHPS
VMOVLPD
VMOVLPD
VMOVLPS
VMOVLPS
VMOVMSKPD
VMOVMSKPD
VMOVMSKPD
VMOVMSKPD
VMOVMSKP S
VMOVMSKP S
VMOVMSKP S
VMOVMSKP S
VMOVNTDQ
VMOVNTQQ
VMOVNTDQ
VMOVNTDQA
VMOVNTPD
VMOVNTPD
VMOVNTPS
VMOVNTPS
VMOVSD
VMOVSD
VMOVSD
VMOVSD
VMOVSHDUP
VMOVSHDUP
VMOVSLDUP
VMOVSLDUP
VMOVSS
VMOVSS
VMOVSS
VMOVSS

xmmrml28, xmmreg
ymmreg, ymmrm256
ymmrm256, ymmreg
ymmreg, ymmrm
ymmrm256, ymmreg
xmmreqg, xmmrml28
xmmrml28, xmmreg
ymmreg, ymmrm256
ymmrm256, ymmreg
ymmreg, ymmrm256
ymmrm256, ymmreg
Xmmreg, xmmreg*, xmmreg
xmmreg, xmmreg*, memé64
memé64, xmmreg

xmmreg, xmmreg*, memé64
memé64, xmmreg

xXxmmreg, xmmreg*, xmmreg
xmmreg, xmmreg*, memé64
memé64, xmmreg

xmmreg, xmmreg*, memé64
memé64, xmmreg

reg64, xmmreg

reg32, xmmreg

reg64, ymmreg

reg32, ymmreg

reg64, xmmreg

reg32, xmmreg

reg64, ymmreg

reg32, ymmreg

meml28, xmmreg

mem256, ymmreg

mem256, ymmreg

xmmreg, meml28

meml28, xmmreg

mem256, ymmreg

meml28, xmmreg

meml28, ymmreg

xXmmreg, xmmreg*, xmmreg
xmmreg, memé64

Xxmmreg, xmmreg*, xmmreg
memé64, xmmreg

xmmreqg, xmmrml28
ymmreg, ymmrm256
xmmreqg, xmmrml28
ymmreg, ymmrm256
Xxmmreg, xmmreg*, xmmreg
xmmreqg, mem32

Xxmmreg, xmmreg*, xmmreg
mem32, xmmreg

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

183

184

VMOVUPD
VMOVUPD
VMOVUPD
VMOVUPD
VMOVUPS
VMOVUPS
VMOVUPS
VMOVUPS
VMP SADBW
VMULPD
VMULPD
VMULPS
VMULPS
VMULSD
VMULSS
VORPD
VORPD
VORPS
VORPS
VPABSB
VPABSW
VPABSD
VPACKSSWB
VPACKSSDW
VPACKUSWB
VPACKUSDW
VPADDB
VPADDW
VPADDD
VPADDQ
VPADDSB
VPADDSW
VPADDUSB
VPADDUSW
VPALIGNR
VPAND
VPANDN
VPAVGB
VPAVGW
VPBLENDVB
VPBLENDW
VPCMPESTRI
VPCMPESTRM
VPCMPISTRI
VPCMPISTRM
VPCMPEQB
VPCMPEQW
VPCMPEQD
VPCMPEQQ

xmmreqg, xmmrml28
xmmrml28, xmmreg
ymmreg, ymmrm256
ymmrm256, ymmreg
xmmreqg, xmmrml28
xmmrml28, xmmreg
ymmreg, ymmrm256
ymmrm256, ymmreg

xmmreqg, xmmreg*, xmmrml28, imm8 AVX, SANDYBRIDGE

xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrm32
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmrml28

xmmreqg, xmmrml28

xmmreqg, xmmrml28

xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28

xmmreqg, xmmreg*, xmmrml28, imm8 AVX, SANDYBRIDGE

xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28

xmmreqg, xmmreg*, xmmrml28, xmmreg AVX, SANDYBRIDGE
xmmreqg, xmmreg*, xmmrml28, imm8 AVX, SANDYBRIDGE

xmmreqg, xmmrml28, imm8
xmmreqg, xmmrml28, imm8
xmmreqg, xmmrml28, imm8
xmmreqg, xmmrml28, imm8
xmmreg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

VPCMPGTB
VPCMPGTW
VPCMPGTD
VPCMPGTQ
VPERMILPD
VPERMILPD
VPERMILPD
VPERMILPD
VPERMILPS
VPERMILPS
VPERMILPS
VPERMILPS
VPERM2F128
VPEXTRB
VPEXTRB
VPEXTRB
VPEXTRW
VPEXTRW
VPEXTRW
VPEXTRW
VPEXTRW
VPEXTRD
VPEXTRD
VPEXTRQ
VPHADDW
VPHADDD
VPHADDSW
VPHMINPOSUW
VPHSUBW
VPHSUBD
VPHSUBSW
VPINSRB
VPINSRB
VPINSRB
VPINSRW
VPINSRW
VPINSRW
VPINSRD
VPINSRD
VPINSRQ
VPINSRQ
VPMADDWD
VPMADDUBSW
VPMAXSB
VPMAXSW
VPMAXSD
VPMAXUB
VPMAXUW
VPMAXUD

xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmrml28, imm8
ymmreqg, ymmrm256, imm8
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmrml28, imm8
ymmreqg, ymmrm256, imm8

ymmreg, ymmreqg, ymmrm256, imm8 AVX, SANDYBRIDGE
AVX, SANDYBRIDGE, LONG

reg64, xmmreqg, imm8
reg32, xmmreqg, imm8

mem8, xmmreg, imm8

reg64, xmmreqg, imm8
reg32, xmmreqg, imm8
reg64, xmmreqg, imm8
reg32, xmmreqg, imm8

meml 6, xmmreg, imm8
reg64, xmmreqg, imm8

rm32, xmmreg, imm8

rm64, xmmreqg, imm8
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmrml28

xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, mem8, imm8
xmmreg, xmmreg*, rm8, imm8

xmmreqg, xmmreg*, reg32, imm8 AVX, SANDYBRIDGE
xmmreqg, xmmreg*, meml6, imm8 AVX, SANDYBRIDGE

xmmreg, xmmreg*, rml 6, imm8

xmmreqg, xmmreg*, reg32, imm8 AVX, SANDYBRIDGE
xmmreqg, xmmreg*, mem32, imm8 AVX, SANDYBRIDGE

xmmreqg, xmmreg*, rm32, imm8

xmmreg, xmmreg*, memé64, imm8 AVX, SANDYBRIDGE, LONG
AVX, SANDYBRIDGE, LONG

xmmreg, xmmreg*, rm64, imm8
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

185

186

VPMINSB
VPMINSW
VPMINSD
VPMINUB
VPMINUW
VPMINUD
VPMOVMSKB
VPMOVMSKB
VPMOVSXBW
VPMOVSXBD
VPMOVSXBQ
VPMOVSXWD
VPMOVSXWQ
VPMOVSXDQ
VPMOVZXBW
VPMOVZXBD
VPMOVZXBQ
VPMOVZXWD
VPMOVZXWQ
VPMOVZXDQ
VPMULHUW
VPMULHRSW
VPMULHW
VPMULLW
VPMULLD
VPMULUDQ
VPMULDQ
VPOR
VPSADBW
VPSHUFEB
VPSHUED
VPSHUFHW
VPSHUFLW
VPSIGNB
VPSIGNW
VPSIGND
VPSLLDQ
VPSRLDQ
VPSLLW
VPSLLW
VPSLLD
VPSLLD
VPSLLQ
VPSLLQ
VPSRAW
VPSRAW
VPSRAD
VPSRAD
VPSRLW

xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
reg64, xmmreg

reg32, xmmreg

xmmreqg, xmmrmé64

xmmreqg, xmmrm32

xmmreqg, xmmrml 6

xmmreqg, xmmrmé64

xmmreqg, xmmrm32

xmmreqg, xmmrmé64

xmmreqg, xmmrmé64

xmmreqg, xmmrm32

xmmreqg, xmmrml 6

xmmreqg, xmmrmé64

xmmreqg, xmmrm32

xmmreqg, xmmrmé64

xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmrml28, imm8
xmmreqg, xmmrml28, imm8
xmmreqg, xmmrml28, imm8
xmmreqg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, imm8
xmmreg, xmmreg*, imm8
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, imm8
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, imm8
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, imm8
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, imm8
xmmreqg, xmmreg*, xmmrml28
xmmreg, xmmreg*, imm8
xmmreg, xmmreg*, xmmrml28

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

, LONG

VPSRLW
VPSRLD
VPSRLD
VPSRLQ
VPSRLQ
VPTEST
VPTEST
VPSUBB
VPSUBW
VPSUBD
VPSUBQ
VPSUBSB
VPSUBSW
VPSUBUSB
VPSUBUSW
VPUNPCKHBW
VPUNPCKHWD
VPUNPCKHDQ
VPUNPCKHQDQ
VPUNPCKLBW
VPUNPCKLWD
VPUNPCKLDQ
VPUNPCKLQDQ
VPXOR
VRCPPS
VRCPPS
VRCPSS
VRSQRTPS
VRSQRTPS
VRSQRTSS
VROUNDPD
VROUNDPD
VROUNDPS
VROUNDPS
VROUNDSD
VROUNDSS
VSHUFPD
VSHUFPD
VSHUFPS
VSHUFPS
VSQRTPD
VSQRTPD
VSQRTPS
VSQRTPS
VSQRTSD
VSQRTSS
VSTMXCSR
VSUBPD
VSUBPD

xmmreqg, xmmreg*, imm8
xmmreg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, imm8
xmmreg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, imm8
xmmreqg, xmmrml28

ymmreg, ymmrm256

xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmrml28

ymmreg, ymmrm256

xmmreqg, xmmreg*, xmmrm32
xmmreqg, xmmrml28

ymmreg, ymmrm256

xmmreqg, xmmreg*, xmmrm32
xmmreqg, xmmrml28, imm8
ymmreqg, ymmrm256, imm8
xmmreqg, xmmrml28, imm8
ymmreqg, ymmrm256, imm8

xmmreg, xmmreg*, xmmrmé64, imm8 AVX, SANDYBRIDGE
xmmreqg, xmmreg*, xmmrm32, imm8 AVX, SANDYBRIDGE
xmmreg, xmmreg*, xmmrml28,
ymmreg, ymmreg*, ymmrm256,
xmmreg, xmmreg*, xmmrml28,
ymmreg, ymmreg*, ymmrm256,

xmmreqg, xmmrml28

ymmreqg, ymmrm256

xmmreqg, xmmrml28

ymmreg, ymmrm256

xmmreqg, xmmreg*, xmmrmé4

xmmreqg, xmmreg*, xmmrm32

mem32

xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

imm8 AVX, SANDYBRIDGE
imm8 AVX, SANDYBRIDGE
imm8 AVX, SANDYBRIDGE
imm8 AVX, SANDYBRIDGE

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

187

VSUBPS
VSUBPS
VSUBSD
VSUBSS
VTESTPS
VTESTPS
VTESTPD
VTESTPD
VUCOMISD
VUCOMISS
VUNPCKHPD
VUNPCKHPD
VUNPCKHPS
VUNPCKHPS
VUNPCKLPD
VUNPCKLPD
VUNPCKLPS
VUNPCKLPS
VXORPD
VXORPD
VXORPS
VXORPS
VZEROALL
VZEROUPPER

xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrmé4
xmmreqg, xmmreg*, xmmrm32
xmmreqg, xmmrml28

ymmreg, ymmrm256

xmmreqg, xmmrml28

ymmreg, ymmrm256

xmmreqg, xmmrmé64

xmmreqg, xmmrm32

xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

B.1.26 Intel Carry—Less Multiplication instructions (CLMUL)

PCLMULLQLQDQ
PCLMULHQLQDQ
PCLMULLQHQDQ
PCLMULHQHQDQ
PCLMULQDQ

xmmreqg, xmmrml28
xmmreqg, xmmrml28
xmmreqg, xmmrml28
xmmreqg, xmmrml28
xmmreqg, xmmrml28, imm8

SSE, WESTMERE
SSE, WESTMERE
SSE, WESTMERE
SSE, WESTMERE
SSE, WESTMERE

B.1.27 Intel AVX Carry—Less Multiplication instructions (CLMUL)

VPCLMULLQLQDQ
VPCLMULHQLQDQ
VPCLMULLQHQDQ
VPCLMULHQHQDQ

VPCLMULQDQ

xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28

xmmreqg, xmmreg*, xmmrml28, imm8 AVX, SANDYBRIDGE

B.1.28 Intel Fused Multiply—Add instructions (FMA)

188

VFMADD132PS
VFMADD132PS
VFMADD132PD
VFMADD132PD
VFMADD312PS
VFMADD312PS
VFMADD312PD
VFMADD312PD

xmmreg, xmmreqg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreg, xmmreqg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE

VFMADD213PS
VFMADD213PS
VFMADD213PD
VFMADD213PD
VFMADD123PS
VFMADD123PS
VFMADD123PD
VFMADD123PD
VFMADD231PS
VFMADD231PS
VFMADD231PD
VFMADD231PD
VFMADD321PS
VFMADD321PS
VFMADD321PD
VFMADD321PD
VFMADDSUB132PS
VFMADDSUB132PS
VFMADDSUB132PD
VFMADDSUB132PD
VFMADDSUB312PS
VFMADDSUB312PS
VFMADDSUB312PD
VFMADDSUB312PD
VFMADDSUB213PS
VFMADDSUB213PS
VFMADDSUB213PD
VFMADDSUB213PD
VFMADDSUB123PS
VFMADDSUB123PS
VFMADDSUB123PD
VFMADDSUB123PD
VFMADDSUB231PS
VFMADDSUB231PS
VFMADDSUB231PD
VFMADDSUB231PD
VFMADDSUB321PS
VFMADDSUB321PS
VFMADDSUB321PD
VFMADDSUB321PD
VFMSUB132PS
VFMSUB132PS
VFMSUB132PD
VFMSUB132PD
VFMSUB312PS
VFMSUB312PS
VFMSUB312PD
VFMSUB312PD
VFMSUB213PS

xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreqg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreqg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreqg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreqg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28

FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE

189

190

VFMSUB213PS
VFMSUB213PD
VFMSUB213PD
VFMSUB123PS
VFMSUB123PS
VFMSUB123PD
VFMSUB123PD
VFMSUB231PS
VFMSUB231PS
VFMSUB231PD
VFMSUB231PD
VFMSUB321PS
VFMSUB321PS
VFMSUB321PD
VFMSUB321PD
VFMSUBADD132PS
VFMSUBADD132PS
VFMSUBADD132PD
VFMSUBADD132PD
VFMSUBADD312PS
VFMSUBADD312PS
VFMSUBADD312PD
VFMSUBADD312PD
VFMSUBADD213PS
VFMSUBADD213PS
VFMSUBADD213PD
VFMSUBADD213PD
VFMSUBADD123PS
VFMSUBADD123PS
VFMSUBADD123PD
VFMSUBADD123PD
VFMSUBADD231PS
VFMSUBADD231PS
VFMSUBADD231PD
VFMSUBADD231PD
VFMSUBADD321PS
VFMSUBADD321PS
VFMSUBADD321PD
VFMSUBADD321PD
VFNMADD132PS
VFNMADD132PS
VENMADD132PD
VENMADD132PD
VFNMADD312PS
VFNMADD312PS
VENMADD312PD
VENMADD312PD
VFNMADD213PS
VFNMADD213PS

ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreqg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreqg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreqg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256

FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE

VEFNMADD213PD
VEFNMADD213PD
VFNMADD123PS
VFNMADD123PS
VENMADD123PD
VENMADD123PD
VFNMADD231PS
VFNMADD231PS
VENMADD231PD
VENMADD231PD
VEFNMADD321PS
VEFNMADD321PS
VEFNMADD321PD
VEFNMADD321PD
VENMSUB132PS
VENMSUB132PS
VENMSUB132PD
VENMSUB132PD
VENMSUB312PS
VENMSUB312PS
VENMSUB312PD
VENMSUB312PD
VENMSUB213PS
VENMSUB213PS
VENMSUB213PD
VENMSUB213PD
VENMSUB123PS
VENMSUB123PS
VENMSUB123PD
VENMSUB123PD
VENMSUB231PS
VENMSUB231PS
VENMSUB231PD
VENMSUB231PD
VENMSUB321PS
VENMSUB321PS
VEFNMSUB321PD
VEFNMSUB321PD
VFMADD132SS

VFMADD132SD

VFMADD312SS

VFMADD312SD

VFMADD213SS

VFMADD213SD

VFMADD123SS

VFMADD123SD

VFMADD231SS

VFMADD231SD

VFMADD321SS

xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreqg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreqg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreqg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreqg, xmmreqg, xmmrml28
ymmreg, ymmreqg, ymmrm256
xmmreg, xmmreg, xmmrm32

Xmmreg, xmmreg, xmmrmé64

xmmreg, xmmreqg, xmmrm32

Xmmreg, xmmreg, xmmrmé64

xmmreg, xmmreqg, xmmrm32

Xmmreg, xmmreg, xmmrmé64

xmmreg, xmmreqg, xmmrm32

Xmmreg, xmmreg, xmmrmé64

xmmreg, xmmreqg, xmmrm32

Xmmreg, xmmreg, xmmrmé64

xmmreg, xmmreqg, xmmrm32

FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE

191

VFMADD321SD
VFMSUB132SS
VFMSUB132SD
VFMSUB312SS
VFMSUB312SD
VFMSUB213SS
VFMSUB213SD
VFMSUB123SS
VFMSUB123SD
VFMSUB231SS
VFMSUB231SD
VFMSUB321SS
VFMSUB321SD
VFNMADD132SS
VEFNMADD132SD
VFNMADD312SS
VEFNMADD312SD
VFNMADD213SS
VEFNMADD213SD
VFNMADD123SS
VEFNMADD123SD
VFNMADD231SS
VEFNMADD231SD
VFNMADD321SS
VEFNMADD321SD
VFNMSUB132SS
VENMSUB132SD
VFNMSUB312SS
VENMSUB312SD
VFNMSUB213SS
VENMSUB213SD
VFNMSUB123SS
VENMSUB123SD
VEFNMSUB231SS
VENMSUB231SD
VFNMSUB321SS
VEFNMSUB321SD

Xmmreg, xmmreg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
Xmmreg, xmmreg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
Xmmreg, xmmreg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
Xmmreg, xmmreg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
Xmmreg, xmmreg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
Xmmreg, xmmreg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
Xmmreg, xmmreg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
Xmmreg, xmmreg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
Xmmreg, xmmreg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
Xmmreg, xmmreg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
Xxmmreg, xmmreqg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
Xxmmreg, xmmreqg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
Xxmmreg, xmmreqg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
Xxmmreg, xmmreqg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
Xxmmreg, xmmreqg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
xmmreg, xmmreg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
xmmreg, xmmreg, xmmrmé64
xmmreg, xmmreqg, xmmrm32
xmmreg, xmmreg, xmmrmé64
xmmreg, xmmreg, xmmrm32
Xmmreg, xmmreg, xmmrmé4

B.1.29 Intel post—-32 nm processor instructions

192

RDFSBASE
RDFSBASE
RDGSBASE
RDGSBASE
RDRAND

RDRAND

RDRAND

WRESBASE
WRESBASE
WRGSBASE

reg32
regb64
reg32
regb64
reglo6
reg32
regb64
reg32
regb64
reg32

FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE
FMA, FUTURE

LONG, FUTURE
LONG, FUTURE
LONG, FUTURE
LONG, FUTURE
FUTURE

FUTURE

LONG, FUTURE
LONG, FUTURE
LONG, FUTURE
LONG, FUTURE

WRGSBASE reg64 LONG, FUTURE

VCVTPH2PS ymmreqg, xmmrml28 AVX, FUTURE
VCVTPH2PS xmmreqg, xmmrmé64 AVX, FUTURE
VCVTPS2PH xmmrml28, ymmreg, imm8 AVX, FUTURE
VCVTPS2PH xmmrmé64, xmmreg, imm8 AVX, FUTURE
ADCX reg32, rm32 FUTURE
ADCX reg64, rm64 LONG, FUTURE
ADOX reg32, rm32 FUTURE
ADOX reg64, rm64 LONG, FUTURE
RDSEED reglé6 FUTURE
RDSEED reg32 FUTURE
RDSEED regb64 LONG, FUTURE
CLAC PRIV, FUTURE
STAC PRIV, FUTURE

B.1.30 VIA (Centaur) security instructions

XSTORE PENT, CYRIX
XCRYPTECB PENT, CYRIX
XCRYPTCBC PENT, CYRIX
XCRYPTCTR PENT, CYRIX
XCRYPTCFEFB PENT, CYRIX
XCRYPTOFB PENT, CYRIX
MONTMUL PENT, CYRIX
XSHA1 PENT, CYRIX
XSHA256 PENT, CYRIX
B.1.31 AMD Lightweight Profiling (LWP) instructions

LLWPCB reg32 AMD, 386

LLWPCB regb64 AMD, X64

SLWPCB reg32 AMD, 386

SLWPCB regb64 AMD, X64

LWPVAL reg32,rm32, imm32 AMD, 386

LWPVAL reg64, rm32, imm32 AMD, X64

LWPINS reg32,rm32, imm32 AMD, 386

LWPINS reg64, rm32, imm32 AMD, X64

B.1.32 AMD XOP and FMA4 instructions (SSE5)

VFMADDPD xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5
VFMADDPD ymmreg, ymmreg*, ymmrm256, ymmreg AMD, SSES5
VFMADDPD xmmreqg, xmmreg*, xmmreqg, xmmrml28 AMD, SSES5
VFMADDPD ymmreg, ymmreg*, ymmreqg, ymmrm256 AMD, SSES5
VFMADDPS xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5
VFMADDPS ymmreg, ymmreg*, ymmrm256, ymmreg AMD, SSES5
VFMADDPS xmmreg, xmmreg*, xmmreqg, xmmrml28 AMD, SSES5
VFMADDPS ymmreg, ymmreg*, ymmreqg, ymmrm256 AMD, SSES5
VFMADDSD xmmreqg, xmmreg*, xmmrmé64, xmmreg AMD, SSE5
VFMADDSD xmmreqg, xmmreg*, xmmreqg, xmmrmé64 AMD, SSES
VFMADDSS xmmreqg, xmmreg*, xmmrm32, xmmreg AMD, SSE5

193

194

VFMADDSS
VFMADDSUBPD
VFMADDSUBPD
VFMADDSUBPD
VFMADDSUBPD
VFMADDSUBPS
VFMADDSUBPS
VFMADDSUBPS
VFMADDSUBPS
VFMSUBADDPD
VFMSUBADDPD
VFMSUBADDPD
VFMSUBADDPD
VFMSUBADDPS
VFMSUBADDPS
VFMSUBADDPS
VFMSUBADDPS
VFMSUBPD
VFMSUBPD
VFMSUBPD
VFMSUBPD
VFMSUBPS
VFMSUBPS
VFMSUBPS
VFMSUBPS
VFMSUBSD
VFMSUBSD
VFMSUBSS
VFMSUBSS
VEFNMADDPD
VEFNMADDPD
VEFNMADDPD
VEFNMADDPD
VEFNMADDPS
VEFNMADDPS
VEFNMADDPS
VEFNMADDPS
VEFNMADDSD
VEFNMADDSD
VFNMADDSS
VFNMADDSS
VEFNMSUBPD
VEFNMSUBPD
VEFNMSUBPD
VEFNMSUBPD
VEFNMSUBPS
VEFNMSUBPS
VEFNMSUBPS
VEFNMSUBPS

xmmreg, xmmreg*, xmmreqg, xmmrm32 AMD, SSE5

xmmreqg, xmmreg*, xmmrml28, xmmreg
ymmreg, ymmreg*, ymmrm256, ymmreg
xmmreg, xmmreg*, xmmreqg, xmmrml28
ymmreg, ymmreg*, ymmreqg, ymmrm256
xmmreqg, xmmreg*, xmmrml28, xmmreg
ymmreg, ymmreg*, ymmrm256, ymmreg
xmmreg, xmmreg*, xmmreqg, xmmrml28
ymmreg, ymmreg*, ymmreqg, ymmrm256
xmmreqg, xmmreg*, xmmrml28, xmmreg
ymmreg, ymmreg*, ymmrm256, ymmreg
xmmreg, xmmreg*, xmmreqg, xmmrml28
ymmreg, ymmreg*, ymmreqg, ymmrm256
xmmreqg, xmmreg*, xmmrml28, xmmreg
ymmreg, ymmreg*, ymmrm256, ymmreg
xmmreg, xmmreg*, xmmreqg, xmmrml28
ymmreg, ymmreg*, ymmreqg, ymmrm256
xmmreqg, xmmreg*, xmmrml28, xmmreg
ymmreg, ymmreg*, ymmrm256, ymmreg
xmmreg, xmmreg*, xmmreqg, xmmrml28
ymmreg, ymmreg*, ymmreqg, ymmrm256
xmmreqg, xmmreg*, xmmrml28, xmmreg
ymmreg, ymmreg*, ymmrm256, ymmreg
xmmreg, xmmreg*, xmmreqg, xmmrml28
ymmreg, ymmreg*, ymmreqg, ymmrm256

AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5

xmmreqg, xmmreg*, xmmrmé64, xmmreg AMD, SSES
xmmreqg, xmmreg*, xmmreqg, xmmrmé64 AMD, SSES
xmmreqg, xmmreg*, xmmrm32, xmmreg AMD, SSE5
xmmreqg, xmmreg*, xmmreqg, xmmrm32 AMD, SSE5S

xmmreg, xmmreg*, xmmrml28, xmmreg
ymmreg, ymmreg*, ymmrm256, ymmreg
xmmreg, xmmreg*, xmmreqg, xmmrml28
ymmreg, ymmreg*, ymmreqg, ymmrm256
xmmreqg, xmmreg*, xmmrml28, xmmreg
ymmreg, ymmreg*, ymmrm256, ymmreg
xmmreg, xmmreg*, xmmreqg, xmmrml28
ymmreg, ymmreg*, ymmreqg, ymmrm256

AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5

xmmreqg, xmmreg*, xmmrmé64, xmmreg AMD, SSE5S
xmmreg, xmmreg*, xmmreqg, xmmrmé64 AMD, SSES
xmmreqg, xmmreg*, xmmrm32, xmmreg AMD, SSE5
xmmreqg, xmmreg*, xmmreqg, xmmrm32 AMD, SSE5

xmmreqg, xmmreg*, xmmrml28, xmmreg
ymmreg, ymmreg*, ymmrm256, ymmreg
xmmreg, xmmreg*, xmmreqg, xmmrml28
ymmreg, ymmreg*, ymmreqg, ymmrm256
xmmreqg, xmmreg*, xmmrml28, xmmreg
ymmreg, ymmreg*, ymmrm256, ymmreg
xmmreg, xmmreg*, xmmreqg, xmmrml28
ymmreg, ymmreg*, ymmreqg, ymmrm256

AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5

VFNMSUBSD
VFNMSUBSD
VFNMSUBSS
VFNMSUBSS
VFRCZPD
VFRCZPD
VFRCZPS
VFRCZPS
VFRCZSD
VFRCZSS
VPCMOV
VPCMOV
VPCMOV
VPCMOV
VPCOMB
VPCOMD
VPCOMQ
VPCOMUB
VPCOMUD
VPCOMUQ
VPCOMUW
VPCOMW
VPHADDBD
VPHADDBQ
VPHADDBW
VPHADDDQ
VPHADDUBD
VPHADDUBQ
VPHADDUBW
VPHADDUDQ
VPHADDUWD
VPHADDUWQ
VPHADDWD
VPHADDWQ
VPHSUBBW
VPHSUBDQ
VPHSUBWD
VPMACSDD
VPMACSDQH
VPMACSDQL
VPMACSSDD
VPMACSSDQH
VPMACSSDQL
VPMACSSWD
VPMACSSWW
VPMACSWD
VPMACSWW
VPMADCSSWD
VPMADCSWD

xmmreqg, xmmreg*, xmmrmé64, xmmreg AMD, SSE5S
xmmreqg, xmmreg*, xmmreqg, xmmrmé64 AMD, SSES
xmmreqg, xmmreg*, xmmrm32, xmmreg AMD, SSE5
xmmreg, xmmreg*, xmmreqg, xmmrm32 AMD, SSE5

xmmreqg, xmmrml28* AMD, SSE5
ymmreg, ymmrm256* AMD, SSES5
xmmreqg, xmmrml28* AMD, SSE5
ymmreg, ymmrm256* AMD, SSES5
xmmreqg, xmmrmé64 * AMD, SSE5
xmmreqg, xmmrm32* AMD, SSE5
xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5
ymmreg, ymmreg*, ymmrm256, ymmreg AMD, SSES5
xmmreqg, xmmreg*, xmmreqg, xmmrml28 AMD, SSES5
ymmreg, ymmreg*, ymmreqg, ymmrm256 AMD, SSES5

xmmreqg, xmmreg*, xmmrml28, imm8 AMD, SSES
xmmreqg, xmmreg*, xmmrml28, imm8 AMD, SSES
xmmreqg, xmmreg*, xmmrml28, imm8 AMD, SSES
xmmreqg, xmmreg*, xmmrml28, imm8 AMD, SSES
xmmreqg, xmmreg*, xmmrml28, imm8 AMD, SSES
xmmreqg, xmmreg*, xmmrml28, imm8 AMD, SSES
xmmreqg, xmmreg*, xmmrml28, imm8 AMD, SSES
xmmreqg, xmmreg*, xmmrml28, imm8 AMD, SSES

xmmreqg, xmmrml28* AMD, SSE5
xmmreqg, xmmrml28* AMD, SSE5
xmmreqg, xmmrml28* AMD, SSE5
xmmreqg, xmmrml28* AMD, SSE5
xmmreqg, xmmrml28* AMD, SSE5
xmmreqg, xmmrml28* AMD, SSE5
xmmreqg, xmmrml28* AMD, SSE5
xmmreqg, xmmrml28* AMD, SSE5
xmmreqg, xmmrml28* AMD, SSE5
xmmreqg, xmmrml28* AMD, SSE5
xmmreqg, xmmrml28* AMD, SSE5
xmmreqg, xmmrml28* AMD, SSE5
xmmreqg, xmmrml28* AMD, SSE5
xmmreqg, xmmrml28* AMD, SSE5
xmmreqg, xmmrml28* AMD, SSE5
xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5
xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5
xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5
xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5
xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5
xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5
xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5
xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5
xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5
xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5
xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5
xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5

195

VPPERM
VPPERM
VPROTB
VPROTB
VPROTB
VPROTD
VPROTD
VPROTD
VPROTQ
VPROTQ
VPROTQ
VPROTW
VPROTW
VPROTW
VPSHAB
VPSHAB
VPSHAD
VPSHAD
VPSHAQ
VPSHAQ
VPSHAW
VPSHAW
VPSHLB
VPSHLB
VPSHLD
VPSHLD
VPSHLQ
VPSHLQ
VPSHLW
VPSHLW

xmmreqg, xmmreg*, xmmreqg, xmmrml28 AMD, SSES5
xmmreqg, xmmreg*, xmmrml28, xmmreg AMD, SSES5

xmmreg, xmmrml28*, xmmreg
xmmreg, xmmreg*, xmmrml28
xmmreqg, xmmrml28*, imm8

xmmreg, xmmrml28*, xmmreg
xmmreg, xmmreg*, xmmrml28
xmmreqg, xmmrml28*, imm8

xmmreg, xmmrml28*, xmmreg
xmmreg, xmmreg*, xmmrml28
xmmreqg, xmmrml28*, imm8

xmmreg, xmmrml28*, xmmreg
xmmreg, xmmreg*, xmmrml28
xmmreqg, xmmrml28*, imm8

xmmreg, xmmrml28*, xmmreg
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmrml28*, xmmreg
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmrml28*, xmmreg
xmmreg, xmmreg*, xmmrml28
xmmreqg, xmmrml28*, xmmreg
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmrml28*, xmmreg
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmrml28*, xmmreg
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmrml28*, xmmreg
xmmreqg, xmmreg*, xmmrml28
xmmreqg, xmmrml28*, xmmreg
xmmreqg, xmmreg*, xmmrml28

B.1.33 Intel AVX2 instructions

196

VMP SADBW
VPABSB
VPABSW
VPABSD
VPACKSSWB
VPACKSSDW
VPACKUSDW
VPACKUSWB
VPADDB
VPADDW
VPADDD
VPADDQ
VPADDSB
VPADDSW
VPADDUSB
VPADDUSW
VPALIGNR

ymmreg, ymmreg*, ymmrm256, imm8 FUTURE, AVX2

ymmreg, ymmrm256

ymmreg, ymmrm256

ymmreg, ymmrm256

ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256

ymmreg, ymmreg*, ymmrm256, imm8 FUTURE, AVX2

AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5
AMD, SSES5

FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2

VPAND
VPANDN
VPAVGB
VPAVGW
VPBLENDVB
VPBLENDW
VPCMPEQB
VPCMPEQW
VPCMPEQD
VPCMPEQQ
VPCMPGTB
VPCMPGTW
VPCMPGTD
VPCMPGTQ
VPHADDW
VPHADDD
VPHADDSW
VPHSUBW
VPHSUBD
VPHSUBSW
VPMADDUBSW
VPMADDWD
VPMAXSB
VPMAXSW
VPMAXSD
VPMAXUB
VPMAXUW
VPMAXUD
VPMINSB
VPMINSW
VPMINSD
VPMINUB
VPMINUW
VPMINUD
VPMOVMSKB
VPMOVMSKB
VPMOVSXBW
VPMOVSXBD
VPMOVSXBD
VPMOVSXBQ
VPMOVSXBQ
VPMOVSXWD
VPMOVSXWQ
VPMOVSXWQ
VPMOVSXDQ
VPMOVZXBW
VPMOVZXBD
VPMOVZXBD
VPMOVZXBQ

ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256

ymmreg, ymmreg*, ymmrm256, ymmreg FUTURE, AVX2
ymmreg, ymmreg*, ymmrm256, imm8 FUTURE, AVX2

ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
reg32, ymmreg

reg64, ymmreg

ymmreqg, xmmrml28

ymmreg, mem64

ymmreg, xmmreg

ymmreg, mem32

ymmreg, xmmreg

ymmreqg, xmmrml28

ymmreg, memé64

ymmreg, xmmreg

ymmreqg, xmmrml28

ymmreqg, xmmrml28

ymmreg, memé64

ymmreg, xmmreg

ymmreg, mem32

FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2

FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2

197

198

VPMOVZXBQ
VPMOVZXWD
VPMOVZXWQ
VPMOVZXWQ
VPMOVZXDQ
VPMULDQ
VPMULHRSW
VPMULHUW
VPMULHW
VPMULLW
VPMULLD
VPMULUDQ
VPOR
VPSADBW
VPSHUFEB
VPSHUED
VPSHUFHW
VPSHUFLW
VPSIGNB
VPSIGNW
VPSIGND
VPSLLDQ
VPSLLW
VPSLLW
VPSLLD
VPSLLD
VPSLLQ
VPSLLQ
VPSRAW
VPSRAW
VPSRAD
VPSRAD
VPSRLDQ
VPSRLW
VPSRLW
VPSRLD
VPSRLD
VPSRLQ
VPSRLQ
VPSUBB
VPSUBW
VPSUBD
VPSUBQ
VPSUBSB
VPSUBSW
VPSUBUSB
VPSUBUSW
VPUNPCKHBW
VPUNPCKHWD

ymmreg, xmmreg
ymmreqg, xmmrml28

ymmreg, mem64

ymmreg, xmmreg

ymmreqg, xmmrml28

ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreqg, ymmrm256, imm8
ymmreqg, ymmrm256, imm8
ymmreqg, ymmrm256, imm8
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, imm8
ymmreg, ymmreg*, xmmrml28
ymmreg, ymmreg*, imm8
ymmreg, ymmreg*, xmmrml28
ymmreg, ymmreg*, imm8
ymmreg, ymmreg*, xmmrml28
ymmreg, ymmreg*, imm8
ymmreg, ymmreg*, xmmrml28
ymmreg, ymmreg*, imm8
ymmreg, ymmreg*, xmmrml28
ymmreg, ymmreg*, imm8
ymmreg, ymmreg*, imm8
ymmreg, ymmreg*, xmmrml28
ymmreg, ymmreg*, imm8
ymmreg, ymmreg*, xmmrml28
ymmreg, ymmreg*, imm8
ymmreg, ymmreg*, xmmrml28
ymmreg, ymmreg*, imm8
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256

FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2

VPUNPCKHDQ
VPUNPCKHQDQ
VPUNPCKLBW
VPUNPCKLWD
VPUNPCKLDQ
VPUNPCKLQDQ
VPXOR
VMOVNTDQA
VBROADCASTSS
VBROADCASTSS
VBROADCASTSD
VBROADCASTI128
VPBLENDD
VPBLENDD
VPBROADCASTB
VPBROADCASTB
VPBROADCASTB
VPBROADCASTB
VPBROADCASTW
VPBROADCASTW
VPBROADCASTW
VPBROADCASTW
VPBROADCASTD
VPBROADCASTD
VPBROADCASTD
VPBROADCASTD
VPBROADCASTQ
VPBROADCASTQ
VPBROADCASTQ
VPBROADCASTQ
VPERMD
VPERMPD
VPERMPS
VPERMOQ
VPERM2I128
VEXTRACTI128
VINSERTI128
VPMASKMOVD
VPMASKMOVD
VPMASKMOVQ
VPMASKMOVQ
VPMASKMOVD
VPMASKMOVD
VPMASKMOVQ
VPMASKMOVQ
VPSLLVD
VPSLLVQ
VPSLLVD
VPSLLVQ

ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
ymmreg, mem256
xXmmreg, xmmreg
ymmreg, xmmreg
ymmreg, xmmreg
ymmreg, meml28

xmmreqg, xmmreg*, xmmrml28, imm8 FUTURE, AVX2
ymmreg, ymmreg*, ymmrm256, imm8 FUTURE, AVX2

xmmreg, mems

xXmmreg, xmmreg

ymmreg, mem8

ymmreg, xmmreg

xmmreg, meml6

xXmmreg, xmmreg

ymmreg, meml6

ymmreg, xmmreg

xmmreqg, mem32

Xmmreg, xmmreg

ymmreg, mem32

ymmreg, xmmreg

xmmreg, memé64

Xmmreg, xmmreg

ymmreg, mem64

ymmreg, xmmreg

ymmreg, ymmreg*, ymmrm256
ymmreqg, ymmrm256, imm8
ymmreg, ymmreg*, ymmrm256
ymmreqg, ymmrm256, imm8

ymmreg, ymmreqg, ymmrm256, imm8 FUTURE, AVX2

xmmrml28, ymmreg, imm8

ymmreg, ymmreg*, xmmrml28, imm8 FUTURE, AVX2

xmmreg, xmmreg*, meml28
ymmreg, ymmreg*, mem256
xmmreg, xmmreg*, meml28
ymmreg, ymmreg*, mem256
meml28, xmmreg*, xmmreg
mem256, ymmreg*, ymmreg
meml28, xmmreg*, xmmreg
mem256, ymmreg*, ymmreg
xmmreg, xmmreg*, xmmrml28
xmmreqg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256

FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2

FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2

FUTURE, AVX2

FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2

199

VPSRAVD

VPSRAVD

VPSRLVD

VPSRLVQ

VPSRLVD

VPSRLVQ

VGATHERDPD
VGATHERQPD
VGATHERDPD
VGATHERQPD
VGATHERDPS
VGATHERQPS
VGATHERDPS
VGATHERQPS
VPGATHERDD
VPGATHERQD
VPGATHERDD
VPGATHERQD
VPGATHERDQ
VPGATHERQQ
VPGATHERDQ
VPGATHERQQ

XABORT
XABORT
XBEGIN
XBEGIN
XBEGIN
XBEGIN
XBEGIN
XBEGIN
XBEGIN
XBEGIN
XEND
XTEST

ANDN
ANDN
BEXTR
BEXTR
BEXTR
BEXTR
BLCI
BLCI
BLCIC
BLCIC

xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
xmmreg, xmmreg*, xmmrml28
xmmreg, xmmreg*, xmmrml28
ymmreg, ymmreg*, ymmrm256
ymmreg, ymmreg*, ymmrm256
xmmreg, xmemé64, xmmreg
xmmreg, xmemé64, xmmreg
ymmreg, xmemé64, ymmreg
ymmreg, ymemé64, ymmreg
xmmreg, xmem32, xmmreg
xmmreg, xmem32, xmmreg
ymmreg, ymem32, ymmreg
xmmreg, ymem32, xmmreg
xmmreg, xmem32, xmmreg
xmmreg, xmem32, xmmreg
ymmreg, ymem32, ymmreg
xmmreg, ymem32, xmmreg
xmmreg, xmemé64, xmmreg
xmmreg, xmemé64, xmmreg
ymmreg, xmemé64, ymmreg
ymmreg, ymemé64, ymmreg

imm

imm8

imm
imm|near
immlé
imm16 |near
imm32
imm32 |near
imm64
immé64 |near

reg32,reg32,rm32
reg64, reg64, rm64
reg32,rm32,reg32
reg64, rm64, reg6d
reg32,rm32, imm32
reg64, rm64, imm32
reg32, rm32
reg64, rm64
reg32, rm32
reg64, rm64

FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2
FUTURE, AVX2

B.1.34 Transactional Synchronization Extensions (TSX)

FUTURE, RTM
FUTURE, RTM

FUTURE, RTM

FUTURE, RTM, ND
FUTURE, RTM, NOLONG
FUTURE, RTM, NOLONG, ND
FUTURE, RTM, NOLONG
FUTURE, RTM, NOLONG, ND
FUTURE, RTM, LONG
FUTURE, RTM, LONG, ND
FUTURE, RTM
FUTURE, HLE, RTM

B.1.35 Intel BMI1 and BMI2 instructions, AMD TBM instructions

FUTURE, BMI1
LONG, FUTURE, BMI1
FUTURE, BMI1
LONG, FUTURE, BMI1
FUTURE, TBM
LONG, FUTURE, TBM
FUTURE, TBM
LONG, FUTURE, TBM
FUTURE, TBM
LONG, FUTURE, TBM

BLSI
BLSI
BLSIC
BLSIC
BLCFILL
BLCFILL
BLSFILL
BLSFILL
BLCMSK
BLCMSK
BLSMSK
BLSMSK
BLSR
BLSR
BLCS
BLCS
BZHI
BZHI
MULX
MULX
PDEP
PDEP
PEXT
PEXT
RORX
RORX
SARX
SARX
SHLX
SHLX
SHRX
SHRX
TZCNT
TZCNT
TZCNT
TZMSK
TZMSK
T1MSKC
T1MSKC

reg32, rm32
reg64, rm64
reg32, rm32
reg64, rm64
reg32, rm32
reg64, rm64
reg32, rm32
reg64, rm64
reg32, rm32
reg64, rm64
reg32, rm32
reg64, rm64
reg32, rm32
reg64, rm64
reg32, rm32
reg64, rm64
reg32,rm32,reg32
reg64, rm64, reg6d
reg32,reg32,rm32
reg64, reg64, rm64
reg32,reg32,rm32
reg64, reg64, rm64
reg32,reg32,rm32
reg64, reg64, rm64
reg32, rm32, imm8
reg64, rm64, imm8
reg32,rm32,reg32
reg64, rm64, reg6d
reg32,rm32,reg32
reg64, rm64, reg6d
reg32,rm32,reg32
reg64, rm64, reg6d
regl6, rml6
reg32, rm32
reg64, rm64
reg32, rm32
reg64, rmé64
reg32, rm32
reg64, rmé64

B.1.36 Intel AVX-512 instructions

VADDPD
VADDPS
VADDSD
VADDSS
VALIGND
VALIGNQ
VBLENDMPD
VBLENDMPS

zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE

xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE
zmmreg|mask|z,zmmreg,zmmrmSlZ|b32,imm8 AVX512, FUTURE
zmmreg|mask|z,zmmreg,zmmrmSlZ|b64,imm8 AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE

FUTURE, BMI1
LONG, FUTURE, BMI1
FUTURE, TBM
LONG, FUTURE, TBM
FUTURE, TBM
LONG, FUTURE, TBM
FUTURE, TBM
LONG, FUTURE, TBM
FUTURE, TBM
LONG, FUTURE, TBM
FUTURE, BMI1
LONG, FUTURE, BMI1
FUTURE, BMI1
LONG, FUTURE, BMI1
FUTURE, TBM
LONG, FUTURE, TBM
FUTURE, BMI2
LONG, FUTURE, BMI2
FUTURE, BMI2
LONG, FUTURE, BMI2
FUTURE, BMI2
LONG, FUTURE, BMI2
FUTURE, BMI2
LONG, FUTURE, BMI2
FUTURE, BMI2
LONG, FUTURE, BMI2
FUTURE, BMI2
LONG, FUTURE, BMI2
FUTURE, BMI2
LONG, FUTURE, BMI2
FUTURE, BMI2
LONG, FUTURE, BMI2
FUTURE, BMI1
FUTURE, BMI1
LONG, FUTURE, BMI1
FUTURE, TBM
LONG, FUTURE, TBM
FUTURE, TBM
LONG, FUTURE, TBM

201

VBROADCASTF32X4 zmmreg|mask |z, meml128 AVX512, FUTURE

VBROADCASTF64X4 zmmreg|mask |z, mem256 AVX512, FUTURE
VBROADCASTI32X4 zmmreg|mask|z, meml128 AVX512, FUTURE
VBROADCASTI64X4 zmmreg|mask|z,mem256 AVX512, FUTURE
VBROADCASTSD zmmreg|mask |z, mem64 AVX512, FUTURE
VBROADCASTSD zmmreg|mask |z, xmmreg AVX512, FUTURE
VBROADCASTSS zmmreg|mask |z, xmmreg AVX512, FUTURE
VBROADCASTSS zmmreg|mask |z, mem32 AVX512, FUTURE

VCMPEQPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPLTPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPLEPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPUNORDPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPNEQPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPNLTPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPNLEPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPORDPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPEQ_UQPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPNGEPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPNGTPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPFALSEPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPNEQ_OQPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPGEPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPGTPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPTRUEPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPEQ_OSPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPLT_OQPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPLE_OQPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPUNORD__SPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPNEQ_USPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPNLT_UQPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPNLE_UQPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPORD_ SPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPEQ_USPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPNGE_UQPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPNGT_UQPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPFALSE_OSPD kreg|mask, zmmreg, zmmrm512 |b64 |sae AVX512, FUTURE
VCMPNEQ_OSPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPGE_OQPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPGT_OQPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPTRUE_USPD kreg|mask, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
VCMPPD kreg|mask,zmmreg,zmmrmSlZ|b64|sae,imm8 AVX512,FUTURE
VCMPEQPS kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
VCMPLTPS kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
VCMPLEPS kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
VCMPUNORDPS kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
VCMPNEQPS kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
VCMPNLTPS kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
VCMPNLEPS kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
VCMPORDPS kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE

202

VCMPEQ_UQPS
VCMPNGEPS
VCMPNGTPS
VCMPFALSEPS
VCMPNEQ_OQPS
VCMPGEPS
VCMPGTPS
VCMPTRUEPS
VCMPEQ_OSPS
VCMPLT_OQPS
VCMPLE_OQPS
VCMPUNORD_SPS
VCMPNEQ_USPS
VCMPNLT_UQPS
VCMPNLE_UQPS
VCMPORD_SPS
VCMPEQ_USPS
VCMPNGE_UQPS
VCMPNGT_UQPS
VCMPFALSE_OSPS
VCMPNEQ_OSPS
VCMPGE_OQPS
VCMPGT_OQPS
VCMPTRUE_USPS
VCMPPS
VCMPEQSD
VCMPLTSD
VCMPLESD
VCMPUNORDSD
VCMPNEQSD
VCMPNLTSD
VCMPNLESD
VCMPORDSD
VCMPEQ_UQSD
VCMPNGESD
VCMPNGTSD
VCMPFALSESD
VCMPNEQ_0QSD
VCMPGESD
VCMPGTSD
VCMPTRUESD
VCMPEQ_0OSSD
VCMPLT_0OQSD
VCMPLE_0OQSD
VCMPUNORD_SSD
VCMPNEQ_USSD
VCMPNLT_UQSD
VCMPNLE_UQSD
VCMPORD_SSD

kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b32|sae,imm8 AVX512, FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512,FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512, FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512, FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512, FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512, FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512, FUTURE
kreg|mask,xmmreg,xmmrm64|sae AVX512, FUTURE

203

VCMPEQ_USSD kreg|mask,xmmreg,xmmrm64|sae AVX512, FUTURE

VCMPNGE_UQSD kreg|mask, xmmreg, xmmrmé64 | sae AVX512, FUTURE
VCMPNGT_UQSD kreg|mask, xmmreg, xmmrmé64 | sae AVX512, FUTURE
VCMPFALSE_O0SSD kreg|mask, xmmreg, xmmrmé64 | sae AVX512, FUTURE
VCMPNEQ_0SSD kreg|mask, xmmreg, xmmrmé64 | sae AVX512, FUTURE
VCMPGE_0QSD kreg|mask, xmmreg, xmmrmé64 | sae AVX512, FUTURE
VCMPGT_0QSD kreg|mask, xmmreg, xmmrmé64 | sae AVX512, FUTURE
VCMPTRUE_USSD kreg|mask, xmmreg, xmmrmé64 | sae AVX512, FUTURE
VCMPSD kreg|mask,xmmreg,xmmrm64|sae,imm8 AVX512, FUTURE
VCMPEQSS kreg|mask,xmmreg,xmmrm32|sae AVX512, FUTURE
VCMPLTSS kreg|mask,xmmreg,xmmrm32|sae AVX512, FUTURE
VCMPLESS kreg|mask,xmmreg,xmmrm32|sae AVX512, FUTURE
VCMPUNORDSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPNEQSS kreg|mask,xmmreg,xmmrm32|sae AVX512, FUTURE
VCMPNLTSS kreg|mask,xmmreg,xmmrm32|sae AVX512, FUTURE
VCMPNLESS kreg|mask,xmmreg,xmmrm32|sae AVX512, FUTURE
VCMPORDSS kreg|mask,xmmreg,xmmrm32|sae AVX512, FUTURE
VCMPEQ_UQSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPNGESS kreg|mask,xmmreg,xmmrm32|sae AVX512,FUTURE
VCMPNGTSS kreg|mask,xmmreg,xmmrm32|sae AVX512,FUTURE
VCMPFALSESS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPNEQ_0QSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPGESS kreg|mask,xmmreg,xmmrm32|sae AVX512,FUTURE
VCMPGTSS kreg|mask,xmmreg,xmmrm32|sae AVX512,FUTURE
VCMPTRUESS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPEQ_0SSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPLT_0QSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPLE_0QSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPUNORD_SSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPNEQ_USSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPNLT_UQSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPNLE_UQSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPORD_SSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPEQ_USSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPNGE_UQSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPNGT_UQSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPFALSE_0SSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPNEQ_0SSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPGE_0QSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPGT_0QSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPTRUE_USSS kreg|mask, xmmreg, xmmrm32 | sae AVX512, FUTURE
VCMPSS kreg|mask,xmmreg,xmmrm32|sae,imm8 AVX512,FUTURE
VCOMISD xmmreg,xmmrm64|sae AVX512, FUTURE
VCOMISS xmmreg,xmmrm32|sae AVX512, FUTURE
VCOMPRESSPD mem512|mask,zmmreg AVX512, FUTURE
VCOMPRESSPD zmmreg|mask |z, zmmreg AVX512, FUTURE
VCOMPRESSPS mem512|mask,zmmreg AVX512, FUTURE
VCOMPRESSPS zmmreg|mask |z, zmmreg AVX512, FUTURE
VCVTDQ2PD zmmreg|mask |z, ymmrm256 |b32|er AVX512, FUTURE

204

VCVTDQ2PS
VCVTPD2DQ
VCVTPD2PS
VCVTPD2UDQ
VCVTPH2PS
VCVTPS2DQ
VCVTPS2PD
VCVTPS2PH
VCVTPS2PH
VCVTPS2UDQ
VCVTSD2SI
VCVTSD2SI
VCVTSD2SS
VCVTSD2USI
VCVTSD2USI
VCVTSI2SD
VCVTSI2SD
VCVTSI2SS
VCVTSI2SS
VCVTSS2SD
VCVTSS2SI
VCVTSS2SI
VCVTSS2USI
VCVTSS2USI
VCVTTPD2DQ
VCVTTPD2UDQ
VCVTTPS2DQ
VCVTTPS2UDQ
VCVTTSD2SI
VCVTTSD2SI
VCVTTSD2USI
VCVTTSD2USI
VCVTTSS2SI
VCVTTSS2SI
VCVTTSS2USI
VCVTTSS2USI
VCVTUDQ2PD
VCVTUDQ2PS
VCVTUSI2SD
VCVTUSI2SD
VCVTUSI2SS
VCVTUSI2SS
VDIVPD
VDIVPS
VDIVSD
VDIVSS
VEXPANDPD
VEXPANDPD
VEXPANDPS

zmmreg|mask |z, zmmrm512 |b32|er
ymmreg |mask |z, zmmrm512 |b64 |er
ymmreg |mask |z, zmmrm512 |b64 |er
ymmreg |mask |z, zmmrm512 |b64 |er
zmmreg|mask |z, ymmrm256 | sae AVX
zmmreg|mask |z, zmmrm512 |b32|er
zmmreg|mask |z, ymmrm256 |b32 | sae
ymmreg |mask |z, zmmreg | sae, imm8

AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
512, FUTURE

AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE

mem256|mask,zmmreg|sae,imm8 AVX512, FUTURE

zmmreg|mask |z, zmmrm512 |b32|er AVX512, FUTURE
reg64,xmmrm64|er AVX512, FUTURE
reg32,xmmrm64|er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
reg64,xmmrm64|er AVX512,FUTURE
reg32,xmmrm64|er AVX512,FUTURE
xmmreg,xmmreg|er,rm64 AVX512,FUTURE
xmmreg,xmmreg|er,rm32 AVX512,FUTURE
xmmreg,xmmreg|er,rm32 AVX512,FUTURE
xmmreg,xmmreg|er,rm64 AVX512,FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 | sae AVX512, FUTURE
reg32,xmmrm32|er AVX512,FUTURE
reg64,xmmrm32|er AVX512,FUTURE
reg32,xmmrm32|er AVX512,FUTURE
reg64,xmmrm32|er AVX512,FUTURE
ymmreg |mask |z, zmmrm512 |b64 | sae AVX512, FUTURE
ymmreg |mask |z, zmmrm512 |b64 | sae AVX512, FUTURE
zmmreg|mask |z, zmmrm512 |b32|sae AVX512, FUTURE
zmmreg|mask |z, zmmrm512 |b32|sae AVX512, FUTURE
reg64,xmmrm64|sae AVX512,FUTURE
reg32,xmmrm64|sae AVX512,FUTURE
reg32,xmmrm64|sae AVX512,FUTURE
reg64,xmmrm64|sae AVX512,FUTURE
reg64,xmmrm32|sae AVX512,FUTURE
reg32,xmmrm32|sae AVX512,FUTURE
reg32,xmmrm32|sae AVX512,FUTURE
reg64,xmmrm32|sae AVX512,FUTURE

zmmreg|mask |z, ymmrm256 |b32|er AVX512, FUTURE
zmmreg|mask |z, zmmrm512 |b32|er AVX512, FUTURE

xmmreg,xmmreg|er,rm32
xmmreg,xmmreg|er,rm64
xmmreg,xmmreg|er,rm64
xmmreg,xmmreg|er,rm32

zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE

zmmreg|mask |z, mem512
zmmreg |mask |z, zmmreg
zmmreg|mask |z, mem512

AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512,FUTURE

AVX512,FUTURE
AVX512,FUTURE
AVX512,FUTURE

205

206

VEXPANDPS
VEXTRACTF32X4
VEXTRACTF32X4
VEXTRACTF64X4
VEXTRACTF64X4
VEXTRACTI32X4
VEXTRACTI32X4
VEXTRACTI64X4
VEXTRACTI64X4
VEXTRACTPS
VEXTRACTPS
VFIXUPIMMPD
VFIXUPIMMPS
VFIXUPIMMSD
VFIXUPIMMSS
VFMADD132PD
VFMADD132PS
VFMADD132SD
VFMADD132SS
VFMADD213PD
VFMADD213PS
VFMADD213SD
VFMADD213SS
VFMADD231PD
VFMADD231PS
VFMADD231SD
VFMADD231SS
VFMADDSUB132PD
VFMADDSUB132PS
VFMADDSUB213PD
VFMADDSUB213PS
VFMADDSUB231PD
VFMADDSUB231PS
VFMSUB132PD
VFMSUB132PS
VFMSUB132SD
VFMSUB132SS
VFMSUB213PD
VFMSUB213PS
VFMSUB213SD
VFMSUB213SS
VFMSUB231PD
VFMSUB231PS
VFMSUB231SD
VFMSUB231SS
VFMSUBADD132PD
VFMSUBADD132PS
VFMSUBADD213PD
VFMSUBADD213PS

zmmreg|mask |z, zmmreg AVX512, FUTURE
mem128|mask,zmmreg,imm8 AVX512, FUTURE
xmmreg|mask|z,zmmreg,immS AVX512, FUTURE
mem256|mask,zmmreg,imm8 AVX512, FUTURE
ymmreg|mask|z,zmmreg,immS AVX512,FUTURE
mem128|mask,zmmreg,imm8 AVX512, FUTURE
xmmreg|mask|z,zmmreg,immS AVX512, FUTURE
ymmreg|mask|z,zmmreg,immS AVX512,FUTURE

mem256|mask,zmmreg,imm8 AVX512, FUTURE
rm64, xmmreqg, imm8 AVX512, FUTURE
rm32, xmmreqg, imm8 AVX512, FUTURE

zmmreg|mask |z, zmmreg, zmmrm512 |b64 | sae, imm8 AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 | sae, imm8 AVX512, FUTURE

xmmreg|mask|z,xmmreg,xmmrm64|sae,imm8 AVX512, FUTURE
xmmreg|mask|z,xmmreg,xmmrm32|sae,imm8 AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE

zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er
zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er
zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er

AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE

xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE

zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er

AVX512, FUTURE
AVX512, FUTURE

xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE

zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er

AVX512, FUTURE
AVX512, FUTURE

xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE

zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er
zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er

AVX512, FUTURE
AVX512,FUTURE
AVX512,FUTURE
AVX512,FUTURE

VFMSUBADD231PD
VFMSUBADD231PS

VEFNMADD132PD
VFNMADD132PS
VEFNMADD132SD
VFNMADD132SS
VEFNMADD213PD
VEFNMADD213PS
VEFNMADD213SD
VFNMADD213SS
VENMADD231PD
VEFNMADD231PS
VEFNMADD231SD
VFNMADD231SS
VENMSUB132PD
VENMSUB132PS
VENMSUB132SD
VFNMSUB132SS
VENMSUB213PD
VENMSUB213PS
VENMSUB213SD
VFNMSUB213SS
VENMSUB231PD
VENMSUB231PS
VENMSUB231SD
VFNMSUB231SS
VGATHERDPD
VGATHERDPS
VGATHERQPD
VGATHERQPS
VGETEXPPD
VGETEXPPS
VGETEXPSD
VGETEXPSS
VGETMANTPD
VGETMANTPS
VGETMANTSD
VGETMANTSS
VINSERTF32X4
VINSERTF64X4
VINSERTI32X4
VINSERTI64X4
VINSERTPS
VMAXPD
VMAXPS
VMAXSD
VMAXSS
VMINPD
VMINPS

zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE

zmmreg|mask,ymem64 AVX512,FUTURE
zmmreg|mask,zmem32 AVX512,FUTURE
zmmreg|mask,zmem64 AVX512,FUTURE
ymmreg|mask,zmem32 AVX512,FUTURE

zmmreg|mask |z, zmmrm512 |b64 | sae AVX512, FUTURE
zmmreg|mask |z, zmmrm512 |b32|sae AVX512, FUTURE

xmmreg |mask | z, xmmreg, xmmrmé64 | sae AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 | sae AVX512, FUTURE
zmmreg|mask |z, zmmrm512 |b64 | sae, imm8 AVX512, FUTURE
zmmreg|mask |z, zmmrm512 |b32 | sae, imm8 AVX512, FUTURE
xmmreg|mask|z,xmmreg,xmmrm64|sae,imm8 AVX512,FUTURE
xmmreg|mask|z,xmmreg,xmmrm32|sae,imm8 AVX512,FUTURE
zmmreg|mask|z,zmmreg,xmmrm128,imm8 AVX512,FUTURE
zmmreg|mask|z,zmmreg,ymmrm256,imm8 AVX512,FUTURE
zmmreg|mask|z,zmmreg,xmmrm128,imm8 AVX512,FUTURE
zmmreg|mask|z,zmmreg,ymmrm256,imm8 AVX512,FUTURE
xmmreqg, xmmreqg, xmmrm32, imm8 AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 | sae AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 | sae AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 | sae AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 | sae AVX512, FUTURE

207

208

VMINSD
VMINSS
VMOVAPD
VMOVAPD
VMOVAPD
VMOVAPS
VMOVAPS
VMOVAPS
VMOVD
VMOVD
VMOVDDUP
VMOVDQA32
VMOVDQA32
VMOVDQA32
VMOVDQAG64
VMOVDQAG64
VMOVDQAG64
VMOVDQU32
VMOVDQU32
VMOVDQU32
VMOVDQU64
VMOVDQU64
VMOVDQU64
VMOVHLPS
VMOVHPD
VMOVHPD
VMOVHPS
VMOVHPS
VMOVLHPS
VMOVLPD
VMOVLPD
VMOVLPS
VMOVLPS
VMOVNTDQ
VMOVNTDQA
VMOVNTPD
VMOVNTPS
VMOVQ
VMOVQ
VMOVQ
VMOVQ
VMOVSD
VMOVSD
VMOVSD
VMOVSD
VMOVSHDUP
VMOVSLDUP
VMOVSS
VMOVSS

xmmreg |mask | z, xmmreg, xmmrmé64 | sae AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 | sae AVX512, FUTURE

zmmreg|mask |z, zmmrm512
mem512 | mask, zmmreg
zmmreg|mask|z,zmmreg
zmmreg|mask |z, zmmrm512
zmmreg|mask|z,zmmreg
mem512 | mask, zmmreg
xmmreqg, rm32

rm32, xmmreg
zmmreg|mask |z, zmmrm512
zmmreg|mask |z, zmmrm512
mem512 | mask, zmmreg
zmmreg|mask|z,zmmreg
zmmreg|mask |z, zmmrm512
zmmreg|mask|z,zmmreg
mem512 | mask, zmmreg
zmmreg|mask |z, zmmrm512
mem512 | mask, zmmreg
zmmreg|mask|z,zmmreg
zmmreg|mask |z, zmmrm512
mem512 | mask, zmmreg
zmmreg|mask|z,zmmreg
Xmmreg, xmmreg, xmmreg
xmmreg, xmmreg, memé4
memé64, xmmreg

xmmreg, xmmreg, memé4
memé64, xmmreg

Xmmreg, xmmreg, xmmreg
xmmreg, xmmreg, memé4
memé64, xmmreg

xmmreg, xmmreg, memé4
memé64, xmmreg

mem512, zmmreg

zmmreqg, mem512

mem512, zmmreg

mem512, zmmreg

xmmreqg, rmé64

rmé64, xmmreg

xmmreqg, xmmrmé64
xmmrmé64, xmmreg

xmmreg|mask|z,xmmreg,xmmreg AVX512,FUTURE

xmmreg |mask | z, mem64
mem64 |mask, xmmreg

xmmreg|mask|z,xmmreg,xmmreg AVX512,FUTURE

zmmreg|mask |z, zmmrm512
zmmreg|mask |z, zmmrm512
xmmreg |mask | z, mem32

xmmreg|mask|z,xmmreg,xmmreg AVX512,FUTURE

AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE

AVX512,FUTURE
AVX512,FUTURE

AVX512,FUTURE
AVX512,FUTURE
AVX512,FUTURE

VMOVSS
VMOVSS
VMOVUPD
VMOVUPD
VMOVUPD
VMOVUPS
VMOVUPS
VMOVUPS
VMULPD
VMULPS
VMULSD
VMULSS
VPABSD
VPABSQ
VPADDD
VPADDQ
VPANDD
VPANDND
VPANDNQ
VPANDQ
VPBLENDMD
VPBLENDMOQ
VPBROADCASTD
VPBROADCASTD
VPBROADCASTD
VPBROADCASTQ
VPBROADCASTQ
VPBROADCASTQ
VPCMPLTD
VPCMPLED
VPCMPNEQD
VPCMPNLTD
VPCMPNLED
VPCMPD
VPCMPEQD
VPCMPEQQ
VPCMPGTD
VPCMPGTQ
VPCMPLTQ
VPCMPLEQ
VPCMPNEQQ
VPCMPNLTQ
VPCMPNLEQ
VPCMPQ
VPCMPEQUD
VPCMPLTUD
VPCMPLEUD
VPCMPNEQUD
VPCMPNLTUD

mem32|mask,xmmreg AVX512, FUTURE
xmmreg|mask|z,xmmreg,xmmreg AVX512,FUTURE
zmmreg|mask |z, zmmrm512 AVX512, FUTURE

mem512|mask,zmmreg AVX512, FUTURE
zmmreg|mask |z, zmmreg AVX512, FUTURE
zmmreg|mask |z, zmmrm512 AVX512, FUTURE
zmmreg|mask |z, zmmreg AVX512, FUTURE
mem512|mask,zmmreg AVX512, FUTURE

zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE

zmmreg|mask |z, zmmrm512 |b32 AVX512, FUTURE
zmmreg|mask |z, zmmrm512 |b64 AVX512, FUTURE

zmmreg|mask |z, zmmreg, zmmrm512 |b32
zmmreg|mask |z, zmmreg, zmmrm512 |b64
zmmreg|mask |z, zmmreg, zmmrm512 |b32
zmmreg|mask |z, zmmreg, zmmrm512 |b32
zmmreg|mask |z, zmmreg, zmmrm512 |b64
zmmreg|mask |z, zmmreg, zmmrm512 |b64
zmmreg|mask |z, zmmreg, zmmrm512 |b32
zmmreg|mask |z, zmmreg, zmmrm512 |b64

AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE

zmmreg|mask |z, xmmreg AVX512, FUTURE
zmmreg|mask |z, mem32 AVX512, FUTURE
zmmreg|mask |z, reg32 AVX512, FUTURE
zmmreg|mask |z, xmmreg AVX512, FUTURE
zmmreg|mask |z, mem64 AVX512, FUTURE
zmmreg|mask |z, reg64 AVX512, FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b32 AVX512,FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b32 AVX512,FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b32 AVX512,FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b32 AVX512,FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b32 AVX512,FUTURE

kreg|mask,zmmreg,zmmrmSlZ|b32,imm8 AVX512,FUTURE

kreg|mask,zmmreg,zmmrmSlZ|b32 AVX512,FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b64 AVX512,FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b32 AVX512,FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b64 AVX512,FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b64 AVX512,FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b64 AVX512,FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b64 AVX512,FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b64 AVX512,FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b64 AVX512,FUTURE

kreg|mask,zmmreg,zmmrmSlZ|b64,imm8 AVX512,FUTURE

kreg|mask,zmmreg,zmmrmSlZ|b32 AVX512, FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b32 AVX512, FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b32 AVX512, FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b32 AVX512, FUTURE
kreg|mask,zmmreg,zmmrmSlZ|b32 AVX512, FUTURE

209

VPCMPNLEUD kreg|mask, zmmreg, zmmrm512 |b32 AVX512, FUTURE

VPCMPUD kreg|mask,zmmreg,zmmrmSlZ|b32,imm8 AVX512, FUTURE
VPCMPEQUQ kreg|mask, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPCMPLTUQ kreg|mask, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPCMPLEUQ kreg|mask, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPCMPNEQUQ kreg|mask, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPCMPNLTUQ kreg|mask, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPCMPNLEUQ kreg|mask, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPCMPUQ kreg|mask,zmmreg,zmmrmSlZ|b64,imm8 AVX512, FUTURE
VPCOMPRESSD zmmreg|mask |z, zmmreg AVX512, FUTURE
VPCOMPRESSD mem512|mask,zmmreg AVX512, FUTURE
VPCOMPRESSQ zmmreg|mask |z, zmmreg AVX512, FUTURE
VPCOMPRESSQ mem512|mask,zmmreg AVX512,FUTURE

VPERMD zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPERMIZ2D zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPERMIZ2PD zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPERMIZ2PS zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPERMIZ2Q zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPERMILPD zmmreg|mask |z, zmmrm512 |b64, imm8 AVX512, FUTURE
VPERMILPD zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPERMILPS zmmreg|mask |z, zmmrm512 |b32, imm8 AVX512, FUTURE
VPERMILPS zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPERMPD zmmreg|mask |z, zmmrm512 |b64, imm8 AVX512, FUTURE
VPERMPD zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPERMPS zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPERMQ zmmreg|mask |z, zmmrm512 |b64, imm8 AVX512, FUTURE
VPERMQ zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPERMT2D zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPERMT2PD zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPERMT2PS zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPERMT2Q zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPEXPANDD zmmreg|mask |z, zmmreg AVX512, FUTURE
VPEXPANDD zmmreg|mask |z, mem512 AVX512, FUTURE
VPEXPANDQ zmmreg|mask |z, mem512 AVX512, FUTURE
VPEXPANDQ zmmreg|mask |z, zmmreg AVX512, FUTURE
VPGATHERDD zmmreg|mask,zmem32 AVX512,FUTURE
VPGATHERDQ zmmreg|mask,ymem64 AVX512,FUTURE
VPGATHERQD ymmreg|mask,zmem32 AVX512,FUTURE
VPGATHERQQ zmmreg|mask,zmem64 AVX512,FUTURE

VPMAXSD zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPMAXSQ zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPMAXUD zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPMAXUQ zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPMINSD zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPMINSQ zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPMINUD zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPMINUQ zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPMOVDB xmmreg |mask | z, zmmreg AVX512, FUTURE

VPMOVDB mem128|mask,zmmreg AVX512, FUTURE

210

VPMOVDW
VPMOVDW
VPMOVQB
VPMOVQB
VPMOVQD
VPMOVQD
VPMOVQW
VPMOVQW
VPMOVSDB
VPMOVSDB
VPMOVSDW
VPMOVSDW
VPMOVSQB
VPMOVSQB
VPMOVSQD
VPMOVSQD
VPMOVSQW
VPMOVSQW
VPMOVSXBD
VPMOVSXBQ
VPMOVSXDQ
VPMOVSXWD
VPMOVSXWQ
VPMOVUSDB
VPMOVUSDB
VPMOVUSDW
VPMOVUSDW
VPMOVUSQB
VPMOVUSQB
VPMOVUSQD
VPMOVUSQD
VPMOVUSQW
VPMOVUSQW
VPMOVZXBD
VPMOVZXBQ
VPMOVZXDQ
VPMOVZXWD
VPMOVZXWQ
VPMULDQ
VPMULLD
VPMULUDQ
VPORD
VPORQ
VPROLD
VPROLQ
VPROLVD
VPROLVQ
VPRORD
VPRORQ

ymmreg |mask |z, zmmreg
mem256 | mask, zmmreg
xmmreg |mask |z, zmmreg
mem64 |mask, zmmreg
ymmreg |mask |z, zmmreg
mem256 | mask, zmmreg
xmmreg |mask |z, zmmreg
mem128 |mask, zmmreg
mem128 |mask, zmmreg
xmmreg |mask |z, zmmreg
mem256 | mask, zmmreg
ymmreg |mask |z, zmmreg
mem64 |mask, zmmreg
xmmreg |mask |z, zmmreg
mem256 | mask, zmmreg
ymmreg |mask |z, zmmreg
xmmreg |mask |z, zmmreg
mem128 |mask, zmmreg
zmmreg|mask |z, xmmrm128
zmmreg|mask |z, xmmrmé64
zmmreg|mask |z, ymmrm256
zmmreg|mask |z, ymmrm256
zmmreg|mask |z, xmmrm128
xmmreg |mask |z, zmmreg
mem128 |mask, zmmreg
ymmreg |mask |z, zmmreg
mem256 | mask, zmmreg
xmmreg |mask |z, zmmreg
mem64 |mask, zmmreg
ymmreg |mask |z, zmmreg
mem256 | mask, zmmreg
xmmreg |mask |z, zmmreg
mem128 |mask, zmmreg
zmmreg|mask |z, xmmrm128
zmmreg | mask |z, xmmrmé64
zmmreg|mask |z, ymmrm256
zmmreg|mask |z, ymmrm256
zmmreg|mask |z, xmmrm128

zmmreg|mask |z, zmmreg, zmmrm512 |b64
zmmreg|mask |z, zmmreg, zmmrm512 |b32
zmmreg|mask |z, zmmreg, zmmrm512 |b64
zmmreg|mask |z, zmmreg, zmmrm512 |b32
zmmreg|mask |z, zmmreg, zmmrm512 |b64

AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE

AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE

zmmreg|mask |z, zmmrm512 |b32, imm8 AVX512, FUTURE
zmmreg|mask |z, zmmrm512 |b64, imm8 AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
zmmreg|mask |z, zmmrm512 |b32, imm8 AVX512, FUTURE
zmmreg|mask |z, zmmrm512 |b64, imm8 AVX512, FUTURE

211

VPRORVD zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE

VPRORVQ zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPSCATTERDD zmem32|mask,zmmreg AVX512, FUTURE
VPSCATTERDQ ymem64|mask,zmmreg AVX512,FUTURE
VPSCATTERQD zmem32|mask,ymmreg AVX512,FUTURE
VPSCATTERQQ zmem64|mask,zmmreg AVX512, FUTURE

VPSHUFD zmmreg|mask |z, zmmrm512 |b32, imm8 AVX512, FUTURE
VPSLLD zmmreg|mask |z, zmmrm512 |b32, imm8 AVX512, FUTURE
VPSLLD zmmreg|mask|z,zmmreg,xmmrm128 AVX512, FUTURE
VPSLLQ zmmreg|mask |z, zmmrm512 |b64, imm8 AVX512, FUTURE
VPSLLQ zmmreg|mask|z,zmmreg,xmmrm128 AVX512, FUTURE
VPSLLVD zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPSLLVQ zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPSRAD zmmreg|mask |z, zmmrm512 |b32, imm8 AVX512, FUTURE
VPSRAD zmmreg|mask|z,zmmreg,xmmrm128 AVX512, FUTURE
VPSRAQ zmmreg|mask |z, zmmrm512 |b64, imm8 AVX512, FUTURE
VPSRAQ zmmreg|mask|z,zmmreg,xmmrm128 AVX512, FUTURE
VPSRAVD zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPSRAVQ zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPSRLD zmmreg|mask |z, zmmrm512 |b32, imm8 AVX512, FUTURE
VPSRLD zmmreg|mask|z,zmmreg,xmmrm128 AVX512,FUTURE
VPSRLQ zmmreg|mask |z, zmmrm512 |b64, imm8 AVX512, FUTURE
VPSRLQ zmmreg|mask|z,zmmreg,xmmrm128 AVX512,FUTURE
VPSRLVD zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPSRLVQ zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPSUBD zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPSUBQ zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPTERNLOGD zmmreg|mask|z,zmmreg,zmmrmSlZ|b32,imm8 AVX512, FUTURE
VPTERNLOGQ zmmreg|mask|z,zmmreg,zmmrmSlZ|b64,imm8 AVX512, FUTURE
VPTESTMD kreg|mask, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPTESTMQ kreg|mask, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPTESTNMD kreg|mask, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPTESTNMQ kreg|mask, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPUNPCKHDQ zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPUNPCKHQDQ zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPUNPCKLDQ zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPUNPCKLQDQ zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VPXORD zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
VPXORQ zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
VRCP14PD zmmreg|mask |z, zmmrm512 |b64 AVX512, FUTURE

VRCP14PS zmmreg|mask |z, zmmrm512 |b32 AVX512, FUTURE

VRCP14SD xmmreg|mask|z,xmmreg,xmmrm64 AVX512,FUTURE
VRCP14SS xmmreg|mask|z,xmmreg,xmmrm32 AVX512,FUTURE
VRNDSCALEPD zmmreg|mask |z, zmmrm512 |b64 |sae, imm8 AVX512, FUTURE
VRNDSCALEPS zmmreg|mask |z, zmmrm512 |b32|sae, imm8 AVX512, FUTURE
VRNDSCALESD xmmreg|mask|z,xmmreg,xmmrm64|sae,imm8 AVX512,FUTURE
VRNDSCALESS xmmreg|mask|z,xmmreg,xmmrm32|sae,imm8 AVX512, FUTURE
VRSQRT14PD zmmreg|mask |z, zmmrm512 |b64 AVX512, FUTURE
VRSQRT14PS zmmreg|mask |z, zmmrm512 |b32 AVX512, FUTURE

212

VRSQRT14SD
VRSQRT14SS
VSCALEFPD
VSCALEFPS
VSCALEFSD
VSCALEFSS
VSCATTERDPD
VSCATTERDPS
VSCATTERQPD
VSCATTERQPS
VSHUFF32X4
VSHUFF64X2
VSHUFI32X4
VSHUFI64X2
VSHUFPD
VSHUFPS
VSQRTPD
VSQRTPS
VSQRTSD
VSQRTSS
VSUBPD
VSUBPS
VSUBSD
VSUBSS
VUCOMISD
VUCOMISS
VUNPCKHPD
VUNPCKHPS
VUNPCKLPD
VUNPCKLPS
KANDNW
KANDW
KMOVW
KMOVW
KMOVW
KMOVW
KNOTW
KORTESTW
KORW
KSHIFTLW
KSHIFTRW
KUNPCKBW
KXNORW
KXORW

VPBROADCASTMB2Q
VPBROADCASTMW2D

VPCONFLICTD
VPCONFLICTQ
VPLZCNTD

xmmreg|mask|z,xmmreg,xmmrm64 AVX512, FUTURE
xmmreg|mask|z,xmmreg,xmmrm32 AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE

ymem64|mask,zmmreg
zmem32 | mask, zmmreg
zmem64 | mask, zmmreg
zmem32|mask,ymmreg

AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE

zmmreg|mask |z, zmmreg, zmmrm512 |b32, imm8
zmmreg|mask |z, zmmreg, zmmrm512 |b64, imm8
zmmreg|mask |z, zmmreg, zmmrm512 |b32, imm8
zmmreg|mask |z, zmmreg, zmmrm512 |b64, imm8
zmmreg|mask |z, zmmreg, zmmrm512 |b64, imm8
zmmreg|mask |z, zmmreg, zmmrm512 |b32, imm8
zmmreg|mask |z, zmmrm512 |b64|er AVX512, FUTURE
zmmreg|mask |z, zmmrm512 |b32|er AVX512, FUTURE

xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 |er AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrmé64 |er AVX512, FUTURE
xmmreg |mask | z, xmmreg, xmmrm32 |er AVX512, FUTURE

xmmreg, xmmrmé64 | sae
xmmreg, xmmrm32 | sae

AVX512, FUTURE
AVX512, FUTURE

AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE

zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b64 AVX512, FUTURE
zmmreg|mask |z, zmmreg, zmmrm512 |b32 AVX512, FUTURE

kreg, kreg, kreg
kreg, kreg, kreg
kreg,krmlé6
kreg, reg32
meml6, kreg
reg32,kreg
kreg, kreg
kreg, kreg
kreg, kreg, kreg
kreg, kreg, imm8
kreg, kreg, imm8
kreg, kreg, kreg
kreg, kreg, kreg
kreg, kreg, kreg
zmmreg, kreg
zmmreg, kreg

AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512, FUTURE
AVX512,FUTURE
AVX512,FUTURE
AVX512,FUTURE

AVX512CD, FUTURE
AVX512CD, FUTURE
zmmreg|mask |z, zmmrm512 |b32 AVX512CD, FUTURE
zmmreg|mask |z, zmmrm512 |b64 AVX512CD, FUTURE
zmmreg|mask |z, zmmrm512 |b32 AVX512CD, FUTURE

213

VPLZCNTQ zmmreg|mask |z, zmmrm512 |b64 AVX512CD, FUTURE
VEXP2PD zmmreg|mask |z, zmmrm512 |b64 |sae AVX512ER, FUTURE
VEXP2PS zmmreg|mask |z, zmmrm512 |b32|sae AVX512ER, FUTURE
VRCP28PD zmmreg|mask |z, zmmrm512 |b64 |sae AVX512ER, FUTURE
VRCP28PS zmmreg|mask |z, zmmrm512 |b32|sae AVX512ER, FUTURE
VRCP28SD xmmreg |mask | z, xmmreg, xmmrmé64 | sae AVX512ER, FUTURE
VRCP28SS xmmreg |mask | z, xmmreg, xmmrm32 | sae AVX512ER, FUTURE
VRSQRT28PD zmmreg|mask |z, zmmrm512 |b64 |sae AVX512ER, FUTURE
VRSQRT28PS zmmreg|mask |z, zmmrm512 |b32|sae AVX512ER, FUTURE
VRSQRT28SD xmmreg |mask | z, xmmreg, xmmrmé64 | sae AVX512ER, FUTURE
VRSQRT28SS xmmreg |mask | z, xmmreg, xmmrm32 | sae AVX512ER, FUTURE
VGATHERPFODPD ymem64|mask AVX512PF, FUTURE
VGATHERPFODPS Zmem32|mask AVX512PF, FUTURE
VGATHERPFOQPD Zmem64|mask AVX512PF, FUTURE
VGATHERPFOQPS Zmem32|mask AVX512PF, FUTURE
VGATHERPF1DPD ymem64|mask AVX512PF, FUTURE
VGATHERPF1DPS Zmem32|mask AVX512PF, FUTURE
VGATHERPF1QPD Zmem64|mask AVX512PF, FUTURE
VGATHERPF1QPS Zmem32|mask AVX512PF, FUTURE
VSCATTERPFODPD ymem64|mask AVX512PF, FUTURE
VSCATTERPFODPS Zmem32|mask AVX512PF, FUTURE
VSCATTERPFOQPD Zmem64|mask AVX512PF, FUTURE
VSCATTERPFOQPS Zmem32|mask AVX512PF, FUTURE
VSCATTERPF1DPD ymem64|mask AVX512PF, FUTURE
VSCATTERPF1DPS Zmem32|mask AVX512PF, FUTURE
VSCATTERPF1QPD Zmem64|mask AVX512PF, FUTURE
VSCATTERPF1QPS Zmem32|mask AVX512PF, FUTURE
PREFETCHWT1 mem8 PREFETCHWT1, FUTURE
BNDMK bndreg, mem MPX, MIB, FUTURE

BNDCL bndreg, mem MPX, FUTURE

BNDCL bndreg, reg32 MPX, NOLONG, FUTURE
BNDCL bndreg, reg64 MPX, LONG, FUTURE

BNDCU bndreg, mem MPX, FUTURE

BNDCU bndreg, reg32 MPX, NOLONG, FUTURE
BNDCU bndreg, reg64 MPX, LONG, FUTURE

BNDCN bndreg, mem MPX, FUTURE

BNDCN bndreg, reg32 MPX, NOLONG, FUTURE
BNDCN bndreg, reg64 MPX, LONG, FUTURE
BNDMOV bndreg, bndreg MPX, FUTURE

BNDMOV bndreg, mem MPX, FUTURE

BNDMOV bndreg, bndreg MPX, FUTURE

BNDMOV mem, bndreg MPX, FUTURE

BNDLDX bndreg, mem MPX, MIB, FUTURE

BNDLDX bndreg, mem, reg32 MPX, MIB, NOLONG, FUTURE
BNDLDX bndreg, mem, reg64 MPX, MIB, LONG, FUTURE
BNDSTX mem, bndreg MPX, MIB, FUTURE

BNDSTX mem, reg32, bndreg MPX, MIB, NOLONG, FUTURE
BNDSTX mem, reg64, bndreg MPX, MIB, LONG, FUTURE
BNDSTX mem, bndreg, reg32 MPX, MIB, NOLONG, FUTURE

214

BNDSTX
SHA1RNDS4
SHAINEXTE
SHAIMSG1
SHAIMSG2

SHA256RNDS2
SHA256RNDS2

SHA256MSG1
SHA256MSG2
CLFLUSHOPT

HINT_NOPO
HINT_NOPO
HINT_NOPO
HINT_NOP1
HINT_NOP1
HINT_NOP1
HINT_NOP2
HINT_NOP2
HINT_NOP2
HINT_NOP3
HINT_NOP3
HINT_NOP3
HINT_NOP4
HINT_NOP4
HINT_NOP4
HINT_NOP5
HINT_NOP5
HINT_NOP5
HINT_NOP6
HINT_NOP6
HINT_NOP6
HINT_NOP7
HINT_NOP7
HINT_NOP7
HINT_NOPS8
HINT_NOPS8
HINT_NOPS8
HINT_NOPY
HINT_NOPY
HINT_NOPY
HINT_NOP10
HINT_NOP10
HINT_NOP10
HINT_NOP11
HINT_NOP11
HINT_NOP11
HINT_NOP12

mem, bndreg, reg64
xmmreqg, xmmrml28, imm8
xmmreqg, xmmrml28
xmmreqg, xmmrml28
xmmreqg, xmmrml28
xmmreqg, xmmrml28, xmmO0
xmmreqg, xmmrml28
xmmreqg, xmmrml28
xmmreqg, xmmrml28

mem

rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6

MPX, MIB, LONG, FUTURE

SHA, FUTURE
SHA, FUTURE
SHA, FUTURE
SHA, FUTURE
SHA, FUTURE
SHA, FUTURE
SHA, FUTURE
SHA, FUTURE
FUTURE

B.1.37 Systematic names for the hinting nop instructions

P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC

215

216

HINT_NOP12
HINT_NOP12
HINT_NOP13
HINT_NOP13
HINT_NOP13
HINT_NOP14
HINT_NOP14
HINT_NOP14
HINT_NOP15
HINT_NOP15
HINT_NOP15
HINT_NOP16
HINT_NOP16
HINT_NOP16
HINT_NOP17
HINT_NOP17
HINT_NOP17
HINT_NOP18
HINT_NOP18
HINT_NOP18
HINT_NOP19
HINT_NOP19
HINT_NOP19
HINT_NOP20
HINT_NOP20
HINT_NOP20
HINT_NOP21
HINT_NOP21
HINT_NOP21
HINT_NOP22
HINT_NOP22
HINT_NOP22
HINT_NOP23
HINT_NOP23
HINT_NOP23
HINT_NOP24
HINT_NOP24
HINT_NOP24
HINT_NOP25
HINT_NOP25
HINT_NOP25
HINT_NOP26
HINT_NOP26
HINT_NOP26
HINT_NOP27
HINT_NOP27
HINT_NOP27
HINT_NOP28
HINT_NOP28

rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32

P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC

HINT_NOP28
HINT_NOP29
HINT_NOP29
HINT_NOP29
HINT_NOP30
HINT_NOP30
HINT_NOP30
HINT_NOP31
HINT_NOP31
HINT_NOP31
HINT_NOP32
HINT_NOP32
HINT_NOP32
HINT_NOP33
HINT_NOP33
HINT_NOP33
HINT_NOP34
HINT_NOP34
HINT_NOP34
HINT_NOP35
HINT_NOP35
HINT_NOP35
HINT_NOP36
HINT_NOP36
HINT_NOP36
HINT_NOP37
HINT_NOP37
HINT_NOP37
HINT_NOP38
HINT_NOP38
HINT_NOP38
HINT_NOP39
HINT_NOP39
HINT_NOP39
HINT_NOP40
HINT_NOP40
HINT_NOP40
HINT_NOP41
HINT_NOP41
HINT_NOP41
HINT_NOP42
HINT_NOP42
HINT_NOP42
HINT_NOP43
HINT_NOP43
HINT_NOP43
HINT_NOP44
HINT_NOP44
HINT_NOP44

rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64

X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC

217

218

HINT_NOP45
HINT_NOP45
HINT_NOP45
HINT_NOP46
HINT_NOP46
HINT_NOP46
HINT_NOP47
HINT_NOP47
HINT_NOP47
HINT_NOP48
HINT_NOP48
HINT_NOP48
HINT_NOP49
HINT_NOP49
HINT_NOP49
HINT_NOP50
HINT_NOP50
HINT_NOP50
HINT_NOP51
HINT_NOP51
HINT_NOP51
HINT_NOP52
HINT_NOP52
HINT_NOP52
HINT_NOP53
HINT_NOP53
HINT_NOP53
HINT_NOP54
HINT_NOP54
HINT_NOP54
HINT_NOP55
HINT_NOP55
HINT_NOP55
HINT_NOP56
HINT_NOP56
HINT_NOP56
HINT_NOP57
HINT_NOP57
HINT_NOP57
HINT_NOP58
HINT_NOP58
HINT_NOP58
HINT_NOP59
HINT_NOP59
HINT_NOP59
HINT_NOP60
HINT_NOP60
HINT_NOP60
HINT_NOP61

rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64
rmlé6

P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC

HINT_NOP61
HINT_NOP61
HINT_NOP62
HINT_NOP62
HINT_NOP62
HINT_NOP63
HINT_NOP63
HINT_NOP63

rm32
rmé64
rmlé6
rm32
rmé64
rmlé6
rm32
rmé64

P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC
P6, UNDOC
P6, UNDOC
X64, UNDOC

219

Appendix C: NASM Version History

C.1 NASM 2 Series
The NASM 2 series supports x86—-64, and is the production version of NASM since 2007.

C.1.1 Version 2.11.02
¢ Add thexsAVEC, XSAVES andXRSTORS family instructions.

* Add theCLFLUSHOPT instruction.

C.1.2 Version 2.11.01

e Allow instructions which implicity usesxMM0 (VBLENDVPD, VBLENDVPS, PBLENDVB and
SHA256RNDS2) to be specified without an explicimm0 on the assembly line. In other words, the
following two lines produce the same output:

vblendvpd xmm2, xmml, xmmO ; Last operand is fixed xmmO
vblendvpd xmm2, xmml ; Implicit xmmO omitted

« In the ELF backends, don't crash the assemblesdft ion align is specified without a value.

C.1.3 Version 2.11
« Add support for the Intel AVX-512 instruction set:
e 16 new, 512-hit SIMD registers. Total 32MM0 ~ zZMM31)

* 8 new opmask registerek0 ~ K7). One of 7 register§k1 ~ K7) can be used as an opmask for
conditional execution.

« A new EVEX encoding prefix. EVEX is based on VEX and provides more capabilities: opmasks,
broadcasting, embedded rounding and compressed displacements.

— opmask
VDIVPD zmmO{kl}{z}, zmml, zmm3 ; conditional vector operation
; using opmask kl.
; {z} is for zero-masking
— broadcasting
VDIVPS zmm4, zmmb5, [rbx]{ltol6} ; load single-precision float and
; replicate it 16 times. 32 * 16 = 512
- embedded rounding
VCVTSI2SD xmm6, xmm7, {rz—-sae}, rax ; round toward zero. note that it
; 1s used as if a separate operand.
; 1t comes after the last SIMD operand

e Add support forzwORD (512 bits),pz andRESZ.
e Add support for the MPX and SHA instruction sets.

« Better handling of section redefinition.

220

« Generate manpages when runnimgake dist’.
« Handle all token chains in mmacro params range.
« Support split [base,index] effective address:
mov eax, [eax+8,ecx*4] ; eax=base, ecx=index, 4=scale, 8=disp
This is expected to be most useful for the MPX instructions.
e SupporteND prefix for branch instructions (for MPX).

e TheDEFAULT directive can now takeND andNOBND options to indicate whether all relevant branches
should be gettingND prefixes. This is expected to be the normal for use in MPX code.

e Add {evex}, {vex3} and {vex2} instruction prefixes to have NASM encode the corresponding
instruction, if possible, with an EVEX, 3-byte VEX, or 2-byte VEX prefix, respectively.

« Support for section names longer than 8 bytes in Win32/Win64 COFF.

« TheNOSPLIT directive by itself no longer forces a single register to become an index register, unless it
has an explicit multiplier.

mov eax, [nosplit eax] ; eax as base register
mov eax, [nosplit eax*1] ; eax as index register

C.1.4 Version 2.10.09

» Pregenerate man pages.

C.1.5 Version 2.10.08
e Fix VMOVNTDQA, MOVNTDQA andMOVLPD instructions.
» Fix collision forvGATHERQP S, VPGATHERQD instructions.
* Fix VPMOVSXBQ, VGATHERQPD, VSPLLW instructions.
* Add a bunch of AMD TBM instructions.
« Fix potential stack overwrite in numbers conversion.
e Allow byte size InPREFETCHTx instructions.
« Make manual pages up to date.
* MakeF3 andr2 SSE prefixes to overrides.
e Support of AMD SVM instructions in 32 bit mode.
« Fix near offsets code generation fafP, CALL instrictions in long mode.

» Fix preprocessor parse regression when id is expanding to a whitespace.

C.1.6 Version 2.10.07

« Fix line continuation parsing being broken in previous version.

C.1.7 Version 2.10.06
« Always quote the dependency source names when using the automatic dependency generation options.

« If no dependency target name is specified via-the or -MQ options, quote the default output name.

221

» Fix assembly of shift operations@®U 8086 mode.
« Fix incorrect generation of explicit immediate byte for shift by 1 under certain circumstances.
* Fix assembly of th# PCMPGTQ instruction.

* Fix RIP-relative relocations in theacho 64 backend.

C.1.8 Version 2.10.05

* Add theCLAC andSTAC instructions.

C.1.9 Version 2.10.04
« Add back the inadvertently deleted 256-bit version ofthRPD instruction.
« Correct disassembly of instructions starting with B2ehex.
« Fix corner cases in token pasting, for example:

$define N le%++%+ 5
dd N, 1le+5

C.1.10 Version 2.10.03
« Correct the assembly of the instruction:
XRELEASE MOV [absolute],AL

Previous versions would incorrectly genemte A2 for this instruction and issue a warning; correct behavior
isto emitfr3 88 05.

C.1.11 Version 2.10.02
« Add theifunc macro package with integer functions, currently only integer logarithms. See section 5.4.
* Add theRDSEED, ADCX andADOX instructions.

C.1.12 Version 2.10.01
¢ Add missing VPMOVMSKB instruction with reg32, ymmreg operands.

C.1.13 Version 2.10

« When optimization is enablelpv r64, imm now optimizes to the shortest form possible between:

mov r32,imm32 ; 5 bytes
mov r64,imm32 ; 7 bytes
mov r64,immé64 ; 10 bytes

To force a specific form, use tlsgRICT keyword, see section 3.7.

e Add support for the Intel AVX2 instruction set.

e Add support for Bit Manipulation Instructions 1 and 2.

« Add support for Intel Transactional Synchronization Extensions (TSX).

« Add support for x32 ELF (32-bit ELF with the CPU in 64-bit mode.) See section 7.9.
« Add support for bigendian UTF-16 and UTF-32. See section 3.4.5.

222

C.1.14 Version 2.09.10

« Fix up NSIS script to protect uninstaller against registry keys absence or corruption. It brings in a few
additional questions to a user during deinstallation procedure but still it is better than unpredictable file
removal.

C.1.15 Version 2.09.09
« Fix initialization of section attributes ofin output format.

* Fixmach64 output format bug that crashes NASM due to NULL symbols.
C.1.16 Version 2.09.08

e FiX __OUTPUT_FORMAT___ assignment when output driver alias is used. For example whealf is
used__OUTPUT_FORMAT__ must be set telf, if -f e1£32 is used__OUTPUT_FORMAT___ must
be assigned accordingly, i.e.¢a£32. The rule applies to all output driver aliases. See section 4.12.6.

C.1.17 Version 2.09.07

« Fix attempts to close same file several times wheption is used.
« Fixes for VEXTRACTF128, VMASKMOVPS encoding.

C.1.18 Version 2.09.06

« Fix missed section attribute initializationtrin output target.

C.1.19 Version 2.09.05
« Fix arguments encoding for VPEXTRW instruction.
* Remove invalid form of VPEXTRW instruction.

* Add vLDDQU as alias fovL.DQQU to match specification.

C.1.20 Version 2.09.04
» Fix incorrect labels offset for VEX intructions.
« Eliminate bogus warning on implicit operand size override.
* %if term could not handle 64 bit numbers.

« The COFF backend was limiting relocations number to 16 bits even if in real there were a way more
relocations.

C.1.21 Version 2.09.03
* Print$macro name inside&rep blocks on error.

« Fix preprocessor expansion behaviour. It happened sometime too early and sometime simply wrong. Move
behaviour back to the origins (down to NASM 2.05.01).

« Fix unitialized data dereference on OMF output format.
e Issue warning on unterminatéd construct.

« Fix for documentation typo.

223

C.1.22 Version 2.09.02

Fix reversed tokens wherde ft ok produces more than one output token.
Fix segmentation fault on disassembling some VEX instructions.
Missing $endi £ did not always cause error.

Fix typo in documentation.

Compound context local preprocessor single line macro identifiers were not expanded early enough and as
result lead to unresolved symbols.

C.1.23 Version 2.09.01

Fix NULL dereference on missed %deftok second parameter.

Fix NULL dereference on invalid %substr parameters.

C.1.24 Version 2.09

224

Fixed assignment the magnitudeafep counter. It is limited to 62 bits now.

Fixed NULL dereference if argument éfstrlen resolves to whitespace. For example if nonexistent
macro parameter is used.

$ifenv, $elifenv, $ifnenv, andselifnenv directives introduced. See section 4.4.9.
Fixed NULL dereference if environment variable is missed.

Updates of new AVX v7 Intel instructions.

PUSH imm32 is now officially documented.

Fix for encoding the LFS, LGS and LSS in 64-bit mode.

Fixes for compatibility with OpenWatcom compiler and DOS 8.3 file format limitation.
Macros parameters range expansion introduced. See section 4.3.4.

Backward compatibility on expanging of local sigle macros restored.

8 hit relocations foe1 £ andbin output formats are introduced.

Short intersegment jumps are permitted now.

An alignment more than 64 bytes are allowedWbn32, win64 output formats.
SECTALIGN directive introduced. See section 4.12.13.

nojmp option introduced immartalign package. See section 5.2.

Short aliasesrin, el £ andmacho for output formats are introduced. Each standsifor32, e1 £32 and
macho32 accordingly.

Faster handling of missing directives implemented.
Various small improvements in documentation.
No hang anymore if unable to open malloc.log file.

The environments without vsnprintf function are able to build nasm again.

e AMD LWP instructions updated.
« Tighten EA checks. We warn a user if there overflow in EA addressing.

* Make -0x the default optimization level. For the legacy behavior, spe«ifg explicitly. See section
2.1.22.

* Environment variables read with! or tested withtifenv can now contain non-identifier characters if
surrounded by quotes. See section 4.10.2.

« Add a new standard macro packagese fp for floating—point convenience macros. See section 5.3.

C.1.25 Version 2.08.02

« Fix crash under certain circumstances when usingtheperator.

C.1.26 Version 2.08.01

* Fix thesuse statement, which was broken in 2.08.

C.1.27 Version 2.08
* A number of enhancements/fixes in macros area.
« Support for converting strings to tokens. See section 4.1.9.
» Fuzzy operand size logic introduced.
« Fix COFF stack overrun on too long export identifiers.
* Fix Macho-0 alignment bug.
» Fix crashes with —fwin32 on file with many exports.
» Fix stack overrun for too long [DEBUG id].
« Fix incorrect shyte usage in IMUL (hit only if optimization flag passed).
« Append ending token forstabs records in the ELF output format.
* New NSIS script which uses ModernUI and MultiUser approach.
« Visual Studio 2008 NASM integration (rules file).
« Warn a user if a constant is too long (and as result will be stripped).
« The obsoleted pre-XOP AMD SSES5 instruction set which was never actualized was removed.
« Fix stack overrun on too long error file name passed from the command line.

« Bind symbols to the .text section by default (ie in case if SECTION directive was omitted) in the ELF
output format.

« Fix sync points array index wrapping.

« A few fixes for FMA4 and XOP instruction templates.
« Add AMD Lightweight Profiling (LWP) instructions.

* Fix the offset forsarg in 64-bit mode.

« An undefined local macra€) no longer matches a global macro with the same name.

225

* Fix NULL dereference on too long local labels.

C.1.28 Version 2.07
* NASM is now under the 2—-clause BSD license. See section 1.1.2.
« Fix the section type for thest rtab section in the1 £64 output format.
« Fix the handling o£oMMON directives in theob § output format.

« New ith andsrec output formats; these are variants of Hien output format which output Intel hex
and Motorola S-records, respectively. See section 7.2 and section 7.3.

e rdf2ihx replaced with an enhancedif2bin, which can output binary, COM, Intel hex or Motorola
S-records.

« The Windows installer now puts the NASM directory first in #2erH of the "NASM Shell".

« Revert the early expansion behaviorefto pre—2.06 behaviok+ is only expanded late.

* Yet another Mach-0O alignment fix.

« Don't delete the list file on errors. Also, include error and warning information in the list file.
« Support for 64-bit Mach—O output, see section 7.8.

« Fix assert failure on certain operations that involve strings with high—bit bytes.

C.1.29 Version 2.06

e This release is dedicated to the memory of Charles A. Crayne, long time NASM developer as well as
moderator otomp. lang.asm.x86 and author of the bodkerious Assemble¥We miss you, Chuck.

« Support for indirect macro expansion((. . . 1). See section 4.1.3.

* %pop can now take an argument, see section 4.7.1.

« The argument téuse is no longer macro—expanded. Usg. . .] if macro expansion is desired.
« Support for thread—local storage in ELF32 and ELF64. See section 7.9.4.

» Fix crash ortifmacro without an argument.

« Correct the arguments to thePCNT instruction.

« Fix section alignment in the Mach-0O format.

« Update AVX support to version 5 of the Intel specification.

« Fix the handling of accesses to context—local macros from higher levels in the context stack.

« TreatwAIT as a prefix rather than as an instruction, thereby allowing constructslliker SAVE to work
correctly.

« Support for structures with a non-zero base offset. See section 4.12.10.

« Correctly handle preprocessor token concatenation (see section 4.3.9) involving floating—point numbers.
* ThePINSR series of instructions have been corrected and rationalized.

* Removed AMD SSEDS5, replaced with the new XOP/FMA4/CVT16 (rev 3.03) spec.

« The ELF backends no longer automatically generatecanment section.

226

* Add additional "well-known" ELF sections with default attributes. See section 7.9.2.

C.1.30 Version 2.05.01
» Fix the—w/-w option parsing, which was broken in NASM 2.05.

C.1.31 Version 2.05
e Fix redundant REX.W prefix ooMP reg64.
« Make the behaviour 6f00 match NASM 0.98 legacy behavior. See section 2.1.22.
« —w-user can be used to suppress the outputvafrning directives. See section 2.1.24.
* Fix bug whereaL.IGN would issue a full alignment datum instead of zero bytes.
» Fix offsets in list files.
¢ FiX $include inside multi-line macros or loops.
« Fix error where NASM would generate a spurious warning on valid optimizations of immediate values.
« Fix arguments to a number of th&T SSE instructions.
» Fix RIP-relative offsets when the instruction carries an immediate.
« Massive overhaul of the ELF64 backend for spec compliance.
* Fix the Geode®FRCPV andPFRSQRTV instruction.

* Fix the SSE 4.ZRrRC32 instruction.
C.1.32 Version 2.04

¢ Sanitize macro handing in therror directive.

* New%warning directive to issue user—controlled warnings.

* %error directives are now deferred to the final assembly phase.

« News%fatal directive to immediately terminate assembly.

 New$%strcat directive to join quoted strings together.

* New %use macro directive to support standard macro directives. See section 4.6.4.

« Excess default parameterssmacro now issues a warning by default. See section 4.3.

* FiXx $ifn and%elifn.

* Fix nestedselse clauses.

e Correct the handling of nestéaeps.

* New %unmacro directive to undeclare a multi-line macro. See section 4.3.12.

e Builtin macro__PAsS___ which expands to the current assembly pass. See section 4.12.9.
e __utfl6__and__utf32__ operators to generate UTF-16 and UTF-32 strings. See section 3.4.5.

e Fix bug in case-insensitive matching when compiled on platforms that don't useritié gure script.
Of the official release binaries, that only affected the OS/2 binary.

« Support for x87 packed BCD constants. See section 3.4.7.

227

Correct theLTR andsSLDT instructions in 64—hit mode.

Fix unnecessary REX.W prefix on indirect jumps in 64-bit mode.
Add AVX versions of the AES instructiong4Es...).

Fix the 256-bit FMA instructions.

Add 256-bit AVX stores per the latest AVX spec.

VIA XCRYPT instructions can now be written either with or withaate, apparently different versions of
the VIA spec wrote them differently.

Add missing 64-biMOVNTI instruction.
Fix the operand size ®fMREAD andVMWRITE.
Numerous bug fixes, especially to the AES, AVX and VTX instructions.

The optimizer now always runs until it converges. It also runs even when disabled, but doesn’t optimize.
This allows most forward references to be resolved properly.

$push no longer needs a context identifier; omitting the context identifier results in an anonymous context.

C.1.33 Version 2.03.01

Fix buffer overflow in the listing module.
Fix the handling of hexadecimal escape codes in ‘...* strings.
The Postscript/PDF documentation has been reformatted.

The-F option now implies-g.

C.1.34 Version 2.03

228

Add support for Intel AVX, CLMUL and FMA instructions, including YMM registers.
dy, resy andyword for 32-byte operands.

Fix some SSES5 instructions.

Intel INVEPT, INVVPID andMOVBE instructions.

Fix checking for critical expressions when the optimizer is enabled.

Support the DWARF debugging format for ELF targets.

Fix optimizations of signed bytes.

Fix operation on bigendian machines.

Fix buffer overflow in the preprocessor.

SAFESEH support for Win32IMAGEREL for Win64 (SEH).

%2 and%?? to refer to the name of a macro itself. In particiddrdefine keyword $%? can be used
to make a keyword "disappear".

New options for dependency generatieMD, —-MF, —-MP, —MT, —MQ.

New preprocessor directivépathsearch andsdepend; INCBIN reimplemented as a macro.

* %include now resolves macros in a sane manner.
e %substr can now be used to get other than one-character substrings.

« New type of character/string constants, using backquotes .(*), which support C-style escape
sequences.

e %defstr andsidefstr to stringize macro definitions before creation.

* Fix forward references usedipu statements.

C.1.35 Version 2.02

« Additional fixes for MMX operands with explicitword, as well as (hopefully) SSE operands with
oword.

« Fix handling of truncated strings witio.

» Fix segfaults due to memory overwrites when floating—point constants were used.
» Fix segfaults due to missing include files.

* Fix OpenWatcom Makefiles for DOS and OS/2.

« Add autogenerated instruction list back into the documentation.

« ELF: Fix segfault when generating stabs, and no symbols have been defined.
« ELF: Experimental support for DWARF debugging information.

* New compile date and time standard macros.

e %ifnum now returns true for negative numbers.

« New %iftoken test for a single token.

* New %ifempty test for empty expansion.

e Add support for th&SAVE instruction group.

« Makefile for Netware/gcc.

« Fix issue with some warnings getting emitted way too many times.

« Autogenerated instruction list added to the documentation.

C.1.36 Version 2.01

« Fix the handling of MMX registers with explictword tags on memory (broken in 2.00 due to 64-bit
changes.)

» Fix the PREFETCH instructions.

» Fix the documentation.

« Fix debugging info when usingt elf (backwards compatibility alias ferf e1£32).
« Man pages for rdoff tools (from the Debian project.)

« ELF: handle large numbers of sections.

« Fix corrupt output when the optimizer runs out of passes.

229

C.1.37 Version 2.00
« Added c99 data—type compliance.
« Added general x86—-64 support.
¢ Added win64 (x86-64 COFF) output format.
e Added__BITs__ standard macro.
* Renamed thelf output format tee1£32 for clarity.
¢ Addedelf64 andmacho (MacOS X) output formats.
* Added Numeric constants iy directive.
e Addedoword, do andreso pseudo operands.
* Allow underscores in numbers.
e Added 8-, 16— and 128-bit floating—point formats.
* Added binary, octal and hexadecimal floating—point.
« Correct the generation of floating—point constants.
« Added floating—point option control.
« Added Infinity and NaN floating point support.
e Added ELF Symbol Visibility support.
* Added setting OSABI value in ELF header directive.
« Added Generate Makefile Dependencies option.
¢ Added Unlimited Optimization Passes option.
e Added%IFN and%ELIFN support.
« Added Logical Negation Operator.
« Enhanced Stack Relative Preprocessor Directives.
e Enhanced ELF Debug Formats.
« Enhanced Send Errors to a File option.
* Added SSSE3, SSE4.1, SSE4.2, SSE5 support.
* Added a large number of additional instructions.
« Significant performance improvements.

e —w+warning and-w-warning can now be written as —Wwarning and —Wno-warning, respectively.
See section 2.1.24.

e Add -w+error to treat warnings as errors. See section 2.1.24.

e Add-w+all and-w-all to enable or disable all suppressible warnings. See section 2.1.24.

C.2 NASM 0.98 Series
The 0.98 series was the production versions of NASM from 1999 to 2007.

230

C.2.1 Version 0.98.39

fix buffer overflow

fix outas86’s.bss handling

"make spotless"” no longer deletes config.h.in.

% (el) if (n) idn insensitivity to string quotes difference (#809300).

(nasm.c) OUTPUT_FORMAT___ changed to string value instead of symbol.

C.2.2 Version 0.98.38

Add Makefile for 16—bit DOS binaries under OpenWatcom, and madifyep .p1 to be able to generate
completely pathless dependencies, as required by OpenWatcom wmake (it supports path searches, but not
explicit paths.)

Fix the STR instruction.

Fix the ELF output format, which was broken under certain circumstances due to the addition of stabs
support.

Quick—fix Borland format debug-info forf ob 7

Fix for $rep with no arguments (#560568)

Fix concatenation of preprocessor function call (#794686)

Fix long label causes coredump (#677841)

Use autoheader as well as autoconf to keep configure from generating ridiculously long command lines.

Make sure that all of the formats which support debugging output actually will suppress debugging output
when-g not specified.

C.2.3 Version 0.98.37

Paths given in-I switch searched farncbin—ed as well asinclude—ed files.
Added stabs debugging for the ELF output format, patch from Martin Wawro.
Fix output/outbin. c to allow origin > 80000000h.

Make -U switch work.

Fix the use of relative offsets with explicit prefixes, @82 loop foo.
Removebackslash ().

Fix the sMsw andsSLDT instructions.

—-02 and-03 are no longer aliases fen10 and-015. If you mean the latter, please say so! :)

C.2.4 Version 0.98.36

Update rdoff — librarian/archiver — common rec — docs!
Fix signed/unsigned problems.
Fix JMP FAR label andCALL FAR label.

Add new multisection support — map files — fix align bug

231

232

Fix sysexit, movhps/movlps reg,reg bugs in insns.dat
Q or o suffixes indicate octal
Support Prescott new instructions (PNI).

Cyrix XSTORE instruction.

C.2.5 Version 0.98.35

Fix build failure on 16-bit DOS (Makefile.bc3 workaround for compiler bug.)

Fix dependencies and compiler warnings.

Add "const" in a number of places.

Add —X option to specify error reporting format (use —Xvc to integrate with Microsoft Visual Studio.)
Minor changes for code legibility.

Drop use of tmpnam() in rdoff (security fix.)

C.2.6 Version 0.98.34

Correct additional address—size vs. operand-size confusions.
Generate dependencies for all Makefiles automatically.

Add support for unimplemented (but theoretically available) registers such as trO and cr5. Segment
registers 6 and 7 are called segr6 and segr7 for the operations which they can be represented.

Correct some disassembler bugs related to redundant address—size prefixes. Some work still remains in this
area.

Correctly generate an error for things like "SEG eax".
Add the JMPE instruction, enabled by "CPU 1A64".
Correct compilation on newer gcc/glibc platforms.

Issue an error on things like "jmp far eax".

C.2.7 Version 0.98.33

New _ NASM PATCHLEVEL__ and _ NASM_VERSION ID__ standard macros to round out the
version—query macros. version.pl now understands X.YYpIWW or X.YY.ZZpIWW as a version number,
equivalent to X.YY.ZZ.WW (or X.YY.0.WW, as appropriate).

New keyword "strict" to disable the optimization of specific operands.

Fix the handing of size overrides with JMP instructions (instructions such as "jmp dword foo".)
Fix the handling of "ABSOLUTE label", where "label" points into a relocatable segment.

Fix OBJ output format with lots of externs.

More documentation updates.

Add —Ov option to get verbose information about optimizations.

Undo a braindead change which brakel i £ directives.

Makefile updates.

C.2.8 Version 0.98.32
e Fix NASM crashing whesmacro directives were left unterminated.
« Lots of documentation updates.
« Complete rewrite of the PostScript/PDF documentation generator.
« The MS Visual C++ Makefile was updated and corrected.
* Recognize .rodata as a standard section name in ELF.
« Fix some obsolete Perl4—-isms in Perl scripts.
« Fix configure.in to work with autoconf 2.5x.
« Fix a couple of "make cleaner" misses.

« Make the normal "./configure && make" work with Cygwin.

C.2.9 Version 0.98.31
« Correctly build in a separate object directory again.
» Derive all references to the version number from the version file.
* New standard macros _ NASM_SUBMINOR__and _ NASM_VER__ macros.
« Lots of Makefile updates and bug fixes.
* New %ifmacro directive to test for multiline macros.
« Documentation updates.
« Fixes for 16—bit OBJ format output.
« Changed the NASM environment variable to NASMENV.

C.2.10 Version 0.98.30

« Changed doc files a lot: completely removed old READMExx and Wishlist files, incorporating all
information in CHANGES and TODO.

« | waited a long time to rename zoutieee.c to (original) outieee.c

« moved all output modules to output/ subdirectory.

« Added 'make strip’ target to strip debug info from nasm & ndisasm.
» Added INSTALL file with installation instructions.

* Added —v option description to nasm man.

« Added dist makefile target to produce source distributions.

e 16-hit support for ELF output format (GNU extension, but useful.)

C.2.11 Version 0.98.28

« Fastcooked this for Debian’s Woody release: Frank applied the INCBIN bug patch to 0.98.25alt and called
it 0.98.28 to not confuse poor little apt—get.

233

C.2.12 Version 0.98.26

* Reorganised files even better from 0.98.25alt

C.2.13 Version 0.98.25alt
« Prettified the source tree. Moved files to more reasonable places.
« Added findleak.pl script to misc/ directory.
« Attempted to fix doc.
C.2.14 Version 0.98.25
 Line continuation character.

« Docs inadvertantly reverted — "dos packaging".

C.2.15 Version 0.98.24p1

¢ FIXME: Someone, document this please.

C.2.16 Version 0.98.24

* Documentation — Ndisasm doc added to Nasm.doc.

C.2.17 Version 0.98.23
« Attempted to remove rdoff versionl

« Lino Mastrodomenico’s patches to preproc.c (%$$ bug?).

C.2.18 Version 0.98.22
« Update rdoff2 — attempt to remove v1.
C.2.19 Version 0.98.21
e Optimization fixes.
C.2.20 Version 0.98.20
e Optimization fixes.
C.2.21 Version 0.98.19
e H. J. Lu’'s patch back out.

C.2.22 Version 0.98.18
* Added ".rdata" to "—f win32".

C.2.23 Version 0.98.17
e H. J. Lu's "bogus elf" patch. (Red Hat problem?)

C.2.24 Version 0.98.16

« Fix whitespace before "[section ..." bug.

234

C.2.25 Version 0.98.15
« Rdoff changes (?).
« Fix fixes to memory leaks.
C.2.26 Version 0.98.14
e Fix memory leaks.
C.2.27 Version 0.98.13
* There was no 0.98.13
C.2.28 Version 0.98.12
« Update optimization (new function of "-01")
« Changes to test/bintest.asm (?).
C.2.29 Version 0.98.11
« Optimization changes.
* Ndisasm fixed.
C.2.30 Version 0.98.10
* There was no 0.98.10
C.2.31 Version 0.98.09

¢ Add multiple sections support to "—f bin".

« Changed GLOBAL_TEMP_BASE in outelf.c from 6 to 15.

* Add "-v" as an alias to the "-r" switch.

* Remove "#ifdef" from Tasm compatibility options.

* Remove redundant size—overrides on "mov ds, ex", etc.
« Fixes to SSE2, other insns.dat (?).

« Enable uppercase "I" and "P" switches.

« Case insinsitive "seg" and "wrt".

« Update install.sh (?).

» Allocate tokens in blocks.

« Improve "invalid effective address" messages.

C.2.32 Version 0.98.08
e Add "sstrlen" and "ssubstr" macro operators
» Fixed broken c16.mac.
« Unterminated string error reported.

« Fixed bugs as per 0.98bf

235

C.2.33 Version 0.98.09b with John Coffman patches released 28-0Oct-2001
Changes from 0.98.07 release to 98.09b as of 28—-Oct-2001

More closely compatible with 0.98 when —0Q0 is implied or specified. Not strictly identical, since backward
branches in range of short offsets are recognized, and signed byte values with no explicit size specification
will be assembled as a single byte.

More forgiving with the PUSH instruction. 0.98 requires a size to be specified always. 0.98.09b will imply
the size from the current BITS setting (16 or 32).

Changed definition of the optimization flag:

—0O0 strict two—pass assembly, JMP and Jcc are handled more like 0.98, except that back— ward JMPs are
short, if possible.

—O1 strict two—pass assembly, but forward branches are assembled with code guaranteed to reach; may
produce larger code than —O0, but will produce successful assembly more often if branch offset sizes are not
specified.

—02 multi-pass optimization, minimize branch offsets; also will minimize signed immed- iate bytes,
overriding size specification.

—03 like —02, but more passes taken, if needed

C.2.34 Version 0.98.07 released 01/28/01

Added Stepane Denis’ SSE2 instructions to a *working* version of the code — some earlier versions were
based on broken code — sorry ’bout that. version "0.98.07"

01/28/01

Cosmetic modifications to nasm.c, nasm.h, AUTHORS, MODIFIED

C.2.35 Version 0.98.06f released 01/18/01

— Add "metalbrain"s jecxz bug fix in insns.dat — alter nasmdoc.src to match — version "0.98.06f"

C.2.36 Version 0.98.06e released 01/09/01

236

Removed the "outforms.h" file — it appears to be someone’s old backup of "outform.h". version "0.98.06e"

01/09/01

fbk — finally added the fix for the "multiple %includes bug", known since 7/27/99 — reported originally (?)
and sent to us by Austin Lunnen — he reports that John Fine had a fix within the day. Here it is...

Nelson Rush resigns from the group. Big thanks to Nelson for his leadership and enthusiasm in getting
these changes incorporated into Nasm!

fbk — [list +], [list -] directives — ineptly implemented, should be re—written or removed, perhaps.

Brian Raiter / fbk — "elfso bug" fix — applied to aoutb format as well — testing might be desirable...

08/07/00

James Seter — —postfix, —prefix command line switches.

Yuri Zaporogets — rdoff utility changes.

C.2.37 Version 0.98p1

GAS-like palign (Panos Minos)
FIXME: Someone, fill this in with details

C.2.38 Version 0.98bf (bug—fixed)

Fixed — elf and aoutb bug — shared libraries — multiple "%include" bug in "—f obj" — jcxz, jecxz bug —
unrecognized option bug in ndisasm

C.2.39 Version 0.98.03 with John Coffman’s changes released 27-Jul-2000

Added signed byte optimizations for the 0x81/0x83 class of instructions: ADC, ADD, AND, CMP, OR,
SBB, SUB, XOR: when used as 'ADD reg16,imm’ or '"ADD reg32,imm.” Also optimization of signed byte
form of 'PUSH imm’ and 'IMUL reg,imm’/'IMUL reg,reg,imm.’ No size specification is needed.

Added multi-pass JMP and Jcc offset optimization. Offsets on forward references will preferentially use
the short form, without the need to code a specific size (short or near) for the branch. Added instructions
for "Jecc label’ to use the form 'Jnotcc $+3/JMP label’, in cases where a short offset is out of bounds. If
compiling for a 386 or higher CPU, then the 386 form of Jcc will be used instead.

This feature is controlled by a new command-line switch: "O", (upper case letter O). "-O0" reverts the
assembler to no extra optimization passes, "-O1" allows up to 5 extra passes, and "-02"(default), allows up
to 10 extra optimization passes.

Added a new directive: 'cpu XXX’, where XXX is any of: 8086, 186, 286, 386, 486, 586, pentium, 686,
PPro, P2, P3 or Katmai. All are case insensitive. All instructions will be selected only if they apply to the
selected cpu or lower. Corrected a couple of bugs in cpu—dependence in 'insns.dat’.

Added to 'standard.mac’, the "usel6" and "use32" forms of the "bits 16/32" directive. This is nothing new,
just conforms to a lot of other assemblers. (minor)

Changed label allocation from 320/32 (10000 labels @ 200K+) to 32/37 (1000 labels); makes running
under DOS much easier. Since additional label space is allocated dynamically, this should have no effect
on large programs with lots of labels. The 37 is a prime, believed to be better for hashing. (minor)

C.2.40 Version 0.98.03

"Integrated patchfile 0.98-0.98.01. | call this version 0.98.03 for historical reasons: 0.98.02 was trashed."
—John Coffman <johninsd@san.rr.com>, 27-Jul-2000

Kendall Bennett's SciTech MGL changes
Note that you must define "TASM_COMPAT" at compile-time to get the Tasm Ideal Mode compatibility.

All changes can be compiled in and out using the TASM_COMPAT macros, and when compiled without
TASM_COMPAT defined we get the exact same binary as the unmodified 0.98 sources.

standard.mac, macros.c: Added macros to ignore TASM directives before first include
nasm.h: Added extern declaration for tasm_compatible_mode

nasm.c: Added global variable tasm_compatible_mode

Added command line switch for TASM compatible mode (-t)

Changed version command line to reflect when compiled with TASM additions

237

238

Added response file processing to allow all arguments on a single line (response file is @resp rather than
—@resp for NASM format).

labels.c: Changes islocal() macro to support TASM style @ @local labels.
Added islocalchar() macro to support TASM style @ @local labels.

parser.c: Added support for TASM style memory references (ie: mov [DWORD eax],10 rather than the
NASM style mov DWORD [eax],10).

preproc.c: Added new directivesarg, $1ocal, $stacksize to directives table
Added support for TASM style directives without a leading % symbol.
Integrated a block of changes from Andrew Zabolotny <bit@eltech.ru>:

A new keyword$xdefine and its case-insensitive counterpatixdefine. They work almost the
same way asdefine and$idefine but expand the definition immediately, not on the invocation.

Something like a cross betweerdefine and $assign. The "x" suffix stands for "eXpand", so
"xdefine" can be deciphered as "expand—and-define". Thus you can do things like this:

%$assign ofs 0
$macro arg 1

$xdefine %1 dword [esptofs]
%$assign ofs ofs+4
%$endmacro

Changed the place where the expansion of %$name macros are expanded. Now they are converted into
..@ctxnum.name form when detokenizing, so there are no quirks as before when using %$name arguments
to macros, in macros etc. For example:

$macro abc 1
$define %1 hello

$endm

abc %$Shere

%$Shere

Now last line will be expanded into "hello" as expected. This also allows for lots of goodies, a good example
are extended "proc" macros included in this archive.

Added a check for "cstk" in smacro_defined() before calling get_ctx() — this allows for things like:

$ifdef %$S$Sabc
%$endif

to work without warnings even in no context.

Added a check for "cstk" in %if*ctx and %elif*ctx directives — this allows to &s€ctx without
excessive warnings. If there is no active contextct x goes through "false" branch.

Removed "user error: " prefix witherror directive: it just clobbers the output and has absolutely no
functionality. Besides, this allows to write macros that does not differ from built—in functions in any way.

Added expansion of string that is output%®rror directive. Now you can do things like:

$define hello(x) Hello, x!

$define %$S$name andy

%error "hello (%$$name)"
Same happened withinclude directive.

« Now all directives that expect an identifier will try to expand and concatenate everything without
whitespaces in between before usage. For example, with "unfixed" nasm the commands

$define %$abc hello
$define __%S$Sabc goodbye
__%Sabc

would produce "incorrect" output: last line will expand to
hello goodbyehello

Not quite what you expected, eh? :-) The answer is that preprocessor treade thene construct as if it
would be

$define ___ %S$abc goodbye
(note the white space between ___and %%$abc). After my "fix" it will "correctly" expand into
goodbye

as expected. Note that | use quotes around words "correct”, "incorrect" etc because this is rather a feature not
a bug; however current behaviour is more logical (and allows more advanced macro usage :-).

Same change was applied tgush,%macro,%imacro,%define,%idefine,$xdefine,%ixdefine,
%$assign,%$iassign,%undef

* A new directive [WARNING {+|-}warning-id] have been added. It works only if the assembly phase is
enabled (i.e. it doesn’t work with nasm —e).

« A new warning type: macro-selfref. By default this warning is disabled; when enabled NASM warns when
a macro self-references itself; for example the following source:

[WARNING macro—-selfref]

$macro push 1-*
$rep %0
push %1
o
$rotate 1
$endrep
$endmacro
push eax, ebx, ecx

will produce a warning, but if we remove the first line we won't see it anymore (which is The Right Thing To
Do {tm} IMHO since C preprocessor eats such constructs without warnings at all).

« Added a "error" routine to preprocessor which always will set ERR_PASSL1 bit in severity_code. This
removes annoying repeated errors on first and second passes from preprocessor.

« Added the %+ operator in single—line macros for concatenating two identifiers. Usage example:

239

240

$define _myfunc _otherfunc
%$define cextern(x) _ %+ x
cextern (myfunc)

After first expansion, third line will become " _myfunc". After this expansion is performed again so it
becomes " _otherunc".

« Now if preprocessor is in a non—emitting state, no warning or error will be emitted. Example:

$if 1
mov eax, ebx

%else
put anything you want between these two brackets,
even macro-parameter references %1 or local
labels %$zz or macro-local labels %$%zz - no
warning will be emitted.

%$endif

« Context-local variables on expansion as a last resort are looked up in outer contexts. For example, the
following piece:

$push outer
$define %$a [esp]

$push inner
%$Sa
Spop
Spop
will expand correctly the fourth line to [esp]; if we’ll define another %$a inside the "inner" context, it will
take precedence over outer definition. However, this modification has been applied only to expand_smacro

and not to smacro_define: as a consequence expansion looks in outer contexig,deift won't look in
outer contexts.

This behaviour is needed because we don't want nested contexts to act on already defined local macros.
Example:

$define %$$argl [espt4]

test eax,eax
if nz

mov eax, %$Sargl
endif

In this example the "if" mmacro enters into the "if* context, so %%$argl is not valid anymore inside "if". Of
course it could be worked around by using explicitely %$$argl but this is ugly IMHO.

« Fixed memory leak isunde£. The origline wasn’t freed before exiting on success.

» Fixed trap in preprocessor when line expanded to empty set of tokens. This happens, for example, in the
following case:

#define SOMETHING
SOMETHING

C.2.41 Version 0.98
All changes since NASM 0.98p3 have been produced by H. Peter Anvin <hpa@zytor.com>.

The documentation comment delimiter is
Allow EQU definitions to refer to external labels; reported by Pedro Gimeno.
Re-enable support for RDOFF v1; reported by Pedro Gimeno.

Updated License file per OK from Simon and Julian.

C.2.42 Version 0.98p9

Update documentation (although the instruction set reference will have to wait; | don’t want to hold up the
0.98 release for it.)

Verified that the NASM implementation of the PEXTRW and PMOVMSKB instructions is correct. The
encoding differs from what the Intel manuals document, but the Pentium Il behaviour matches NASM, not
the Intel manuals.

Fix handling of implicit sizes in PSHUFW and PINSRW, reported by Stefan Hoffmeister.

Resurrect the —s option, which was removed when changing the diagnostic output to stdout.

C.2.43 Version 0.98p8

Fix for "DB" when NASM is running on a bigendian machine.
Invoke insns.pl once for each output script, making Makefile.in legal for "make —j".
Improve the Unix configure—based makefiles to make package creation easier.

Included an RPM .spec file for building RPM (RedHat Package Manager) packages on Linux or Unix
systems.

Fix Makefile dependency problems.
Change src/rdsrc.pl to include sectioning information in info output; required for install-info to work.

Updated the RDOFF distribution to version 2 from Jules; minor massaging to make it compile in my
environment.

Split doc files that can be built by anyone with a Perl interpreter off into a separate archive.

"Dress rehearsal" release!

C.2.44 Version 0.98p7

Fixed opcodes with a third byte-sized immediate argument to not complain if given "byte" on the
immediate.

Allow $undef to remove single—line macros with arguments. This matches the behaviour of #undef in the
C preprocessor.

Allow —d, —u, —i and —p to be specified as -D, -U, —I and —P for compatibility with most C compilers and
preprocessors. This allows Makefile options to be shared between cc and nasm, for example.

Minor cleanups.

Went through the list of Katmai instructions and hopefully fixed the (rather few) mistakes in it.

241

(Hopefully) fixed a number of disassembler bugs related to ambiguous instructions (disambiguated by —p)
and SSE instructions with REP.

Fix for bug reported by Mark Junger: "call dword 0x12345678" should work and may add an OSP
(affected CALL, JMP, Jcc).

Fix for environments when "stderr" isn’'t a compile—time constant.

C.2.45 Version 0.98p6

Took officially over coordination of the 0.98 release; so drop the p3.x notation. Skipped p4 and p5 to avoid
confusion with John Fine’s J4 and J5 releases.

Update the documentation; however, it still doesn’t include documentation for the various new
instructions. | somehow wonder if it makes sense to have an instruction set reference in the assembler
manual when Intel et al have PDF versions of their manuals online.

Recognize "idt" or "centaur" for the —p option to ndisasm.

Changed error messages back to stderr where they belong, but add an —E option to redirect them elsewhere
(the DOS shell cannot redirect stderr.)

—M option to generate Makefile dependencies (based on code from Alex Verstak.)
$undef preprocessor directive, and —u option, that undefines a single-line macro.
0S/2 Makefile (Mkfiles/Makefile.os2) for Borland under OS/2; from Chuck Crayne.
Various minor bugfixes (reported by): — Danglitg in preproc.c (Martin Junker)

THERE ARE KNOWN BUGS IN SSE AND THE OTHER KATMAI INSTRUCTIONS. | am on a trip
and didn’t bring the Katmai instruction reference, so | can’t work on them right now.

Updated the License file per agreement with Simon and Jules to include a GPL distribution clause.

C.2.46 Version 0.98p3.7

(Hopefully) fixed the canned Makefiles to include the outrdf2 and zoutieee modules.

Renamed changes.asm to changed.asm.

C.2.47 Version 0.98p3.6

Fixed a bunch of instructions that were added in 0.98p3.5 which had memory operands, and the
address—size prefix was missing from the instruction pattern.

C.2.48 Version 0.98p3.5

242

Merged in changes from John S. Fine’s 0.98-J5 release. John’s based 0.98-J5 on my 0.98p3.3 release; this
merges the changes.

Expanded the instructions flag field to a long so we can fit more flags; mark SSE (KNI) and AMD or
Katmai—specific instructions as such.

Fix the "PRIV" flag on a bunch of instructions, and create new "PROT" flag for protected—mode-only
instructions (orthogonal to if the instruction is privileged!) and new "SMM" flag for SMM-only
instructions.

Added AMD-only SYSCALL and SYSRET instructions.

« Make SSE actually work, and add new Katmai MMX instructions.

« Added a —p (preferred vendor) option to ndisasm so that it can distinguish e.g. Cyrix opcodes also used in
SSE. For example:

ndisasm -p cyrix aliased.bin

00000000 670F514310 paddsiw mmO, [ebx+0x10]
00000005 670F514320 paddsiw mmO, [ebx+0x20]
ndisasm -p intel aliased.bin

00000000 670F514310 sqgqrtps xmmO, [ebx+0x10]
00000005 670F514320 sqgqrtps xmm0, [ebx+0x20]

e Added a bunch of Cyrix—specific instructions.

C.2.49 Version 0.98p3.4

« Made at least an attempt to modify all the additional Makefiles (in the Mkfiles directory). | can't test it, but
this was the best | could do.

* DOS DJGPP+"Opus Make" Makefile from John S. Fine.

¢ changes.asm changes from John S. Fine.

C.2.50 Version 0.98p3.3
e Patch from Conan Brink to allow nesting%fep directives.

« If we're going to allow INTO1 as an alias for INT1/ICEBP (one of Jules 0.98p3 changes), then we should
allow INTO3 as an alias for INT3 as well.

« Updated changes.asm to include the latest changes.

e Tried to clean up the <CR>s that had snuck in from a DOS/Windows environment into my Unix
environment, and try to make sure than DOS/Windows users get them back.

« We would silently generate broken tools if insns.dat wasn’t sorted properly. Change insns.pl so that the
order doesn’t matter.

e Fix bug in insns.pl (introduced by me) which would cause conditional instructions to have an extra "cc" in
disassembly, e.g. "jnz" disassembled as "jccnz".

C.2.51 Version 0.98p3.2
« Merged in John S. Fine’s changes from his 0.98-J4 prerelease; see http://www.csoft.net/cz/johnfine/

e Changed previous "spotless" Makefile target (appropriate for distribution) to "distclean”, and added
"cleaner" target which is same as "clean" except deletes files generated by Perl scripts; "spotless"” is union.

+ Removed BASIC programs from distribution. Get a Perl interpreter instead (see below.)
e Calling this "pre-release 3.2" rather than "p3—hpa2" because of John’s contributions.

« Actually link in the IEEE output format (zoutieee.c); fix a bunch of compiler warnings in that file. Note |
don’t know what IEEE output is supposed to look like, so these changes were made "blind".

C.2.52 Version 0.98p3-hpa

* Merged nasm098p3.zip with nasm-0.97.tar.gz to create a fully buildable version for Unix systems
(Makefile.in updates, etc.)

243

Changed insns.pl to create the instruction tables in nasm.h and names.c, so that a new instruction can be
added by adding it *only* to insns.dat.

Added the following new instructions: SYSENTER, SYSEXIT, FXSAVE, FXRSTOR, UD1, UD2 (the
latter two are two opcodes that Intel guarantee will never be used; one of them is documented as UD2 in
Intel documentation, the other one just as "Undefined Opcode" — calling it UD1 seemed to make sense.)

MAX_SYMBOL was defined to be 9, but LOADALL286 and LOADALL386 are 10 characters long. Now
MAX_SYMBOL is derived from insns.dat.

A note on the BASIC programs included: forget them. insns.bas is already out of date. Get yourself a Perl
interpreter for your platform of choice at http://www.cpan.org/ports/index.html.

C.2.53 Version 0.98 pre-release 3

added response file support, improved command line handling, new layout help screen

fixed limit checking bug, 'OUT byte nn, reg’ bug, and a couple of rdoff related bugs, updated Wishlist;
0.98 Prerelease 3.

C.2.54 Version 0.98 pre-release 2

fixed bug in outcoff.c to do with truncating section names longer than 8 characters, referencing beyond end
of string; 0.98 pre-release 2

C.2.55 Version 0.98 pre-release 1

244

Fixed a bug whereby STRUC didn’t work at all in RDF.
Fixed a problem with group specification in PUBDEFs in OBJ.
Improved ease of adding new output formats. Contribution due to Fox Cutter.

Fixed a bug in relocations in the ‘bin’ format: was showing up when a relocatable reference crossed an
8192-hyte boundary in any output section.

Fixed a bug in local labels: local-label lookups were inconsistent between passes one and two if an EQU
occurred between the definition of a global label and the subsequent use of a local label local to that global.

Fixed a seg—fault in the preprocessor (again) which happened when you use a blank line as the first line of
a multi-line macro definition and then defined a label on the same line as a call to that macro.

Fixed a stale-pointer bug in the handling of the NASM environment variable. Thanks to Thomas
McWilliams.

ELF had a hard limit on the number of sections which caused segfaults when transgressed. Fixed.
Added ability for ndisasm to read from stdin by using ‘-’ as the filename.
ndisasm wasn't outputting the TO keyword. Fixed.

Fixed error cascade on bogus expressiohiif — an error in evaluation was causing the erttir@ to be
discarded, thus creating trouble later whensthgése or $endi f was encountered.

Forward reference tracking was instruction—granular not operand- granular, which was causing
286-specific code to be generated needlessly on code of the form ‘shr word [forwardref],1’. Thanks to Jim
Hague for sending a patch.

http://www.cpan.org/ports/index.html

All messages now appear on stdout, as sending them to stderr serves no useful purpose other than to make
redirection difficult.

Fixed the problem with EQUSs pointing to an external symbol — this now generates an error message.
Allowed multiple size prefixes to an operand, of which only the first is taken into account.

Incorporated John Fine’s changes, including fixes of a large number of preprocessor bugs, some small
problems in OBJ, and a reworking of label handling to define labels before their line is assembled, rather
than after.

Reformatted a lot of the source code to be more readable. Included 'coding.txt’ as a guideline for how to
format code for contributors.

Stopped nestedreps causing a panic — they now cause a slightly more friendly error message instead.
Fixed floating point constant problems (patch by Pedro Gimeno)

Fixed the return value of insn_size() not being checked for —1, indicating an error.

Incorporated 3Dnow! instructions.

Fixed the 'mov eax, eax + ebx’ bug.

Fixed the GLOBAL EQU bug in ELF. Released developers release 3.

Incorporated John Fine’'s command line parsing changes

Incorporated David Lindauer's OMF debug support

Made changes for LCC 4.0 support NASM_CDecl__, removed register size specification warning
when sizes agree).

C.3 NASM 0.9 Series

Revisions before 0.98.

C.3.1 Version 0.97 released December 1997

This was entirely a bug—fix release to 0.96, which seems to have got cursed. Silly me.

Fixed stupid mistake in OBJ which caused ‘MOV EAX,<constant>' to fail. Caused by an error in the
‘MOV EAX,<segment>' support.

ndisasm hung at EOF when compiled with Icc on Linux because Icc on Linux somehow breaks feof().
ndisasm now does not rely on feof().

A heading in the documentation was missing due to a markup error in the indexing. Fixed.

Fixed failure to update all pointers on realloc() within extended— operand code in parser.c. Was causing
wrong behaviour and seg faults on lines such as ‘dd 0.0,0.0,0.0,0.0,...]

Fixed a subtle preprocessor bug whereby invoking one multi-line macro on the first line of the expansion
of another, when the second had been invoked with a label defined before it, didn’t expand the inner macro.

Added internal.doc back in to the distribution archives — it was missing in 0.96 *blush*
Fixed bug causing 0.96 to be unable to assemble its own test files, specifically objtest.asm. *blush again*

Fixed seg—faults and bogus error messages caused by mismatebing@ndsendrep within multi-line
macro definitions.

245

246

« Fixed a problem with buffer overrun in OBJ, which was causing corruption at ends of long PUBDEF
records.

e Separated DOS archives into main—program and documentation to reduce download size.

C.3.2 Version 0.96 released November 1997

« Fixed a bug whereby, if ‘nasm sourcefile’ would cause a filename collision warning and put output into
‘nasm.out’, then ‘nasm sourcefile —o outputfile’ still gave the warning even though the ‘-0’ was honoured.
Fixed name pollution under Digital UNIX: one of its header files defined R_SP, which broke the enum in
nasm.h.

e Fixed minor instruction table problems: FUCOM and FUCOMP didn't have two-operand forms;
NDISASM didn’t recognise the longer register forms of PUSH and POP (eg FF F3 for PUSH BX); TEST
mem,imm32 was flagged as undocumented; the 32-bit forms of CMOV had 16-bit operand size prefixes;
‘AAD imm’ and ‘AAM imm’ are no longer flagged as undocumented because the Intel Architecture
reference documents them.

« Fixed a problem with the local-label mechanism, whereby strange types of symbol (EQUs, auto—defined
OBJ segment base symbols) interfered with the ‘previous global label’ value and screwed up local labels.

« Fixed a bug whereby the stub preprocessor didn't communicate with the listing file generator, so that the
—a and — options in conjunction would produce a useless listing file.

* Merged ‘0s2’ object file format back into ‘obj’, after discovering that ‘obj’ _also_ shouldn’t have a link
pass separator in a module containing a non-trivial MODEND. Flat segments are now declared using the
FLAT attribute. ‘0s2’ is no longer a valid object format name: use ‘obj'.

« Removed the fixed-size temporary storage in the evaluator. Very very long expressions (like ‘mov
ax,1+1+1+1+...’ for two hundred 1s or so) should now no longer crash NASM.

« Fixed a bug involving segfaults on disassembly of MMX instructions, by changing the meaning of one of
the operand-type flags in nasm.h. This may cause other apparently unrelated MMX problems; it needs to
be tested thoroughly.

« Fixed some buffer overrun problems with large OBJ output files. Thanks to DJ Delorie for the bug report
and fix.

« Made preprocess—only mode actually listen to%hene markers as it prints them, so that it can report
errors more sanely.

« Re-designed the evaluator to keep more sensible track of expressions involving forward references: can
now cope with previously—nightmare situations such as:

mov ax, foo | bar
foo equ 1
bar equ 2

* Added the ALIGN and ALIGNB standard macros.
e Added PIC support in ELF: use of WRT to obtain the four extra relocation types needed.

« Added the ability for output file formats to define their own extensions to the GLOBAL, COMMON and
EXTERN directives.

« Implemented common-variable alignment, and global-symbol type and size declarations, in ELF.

Implemented NEAR and FAR keywords for common variables, plus far-common element size
specification, in OBJ.

Added a feature whereby EXTERNs and COMMONSs in OBJ can be given a default WRT specification
(either a segment or a group).

Transformed the Unix NASM archive into an auto—configuring package.

Added a sanity—check for people applying SEG to things which are already segment bases: this previously
went unnoticed by the SEG processing and caused OBJ-driver panics later.

Added the ability, in OBJ format, to deal with ‘MOV EAX,<segment>’' type references: OBJ doesn’t
directly support dword-size segment base fixups, but as long as the low two bytes of the constant term are
zero, a word-size fixup can be generated instead and it will work.

Added the ability to specify sections’ alignment requirements in Win32 object files and pure binary files.

Added preprocess—time expression evaluationsthesign (and%iassign) directive and the barei £
(and%elif) conditional. Added relational operators to the evaluator, for use oy finconstructs: the
standard relationals = < > <= >= <> (and C-like synonyms == and !=) plus low—precedence logical
operators &&, ™ and ||.

Added a preprocessor repeat constraetp / $exitrep / $endrep.
Addedthe FILE__and _ LINE__ standard macros.
Added a sanity check for number constants being greater than OXFFFFFFFF. The warning can be disabled.

Added the %0 token whereby a variadic multi-line macro can tell how many parameters it's been given in
a specific invocation.

Addedsrotate, allowing multi-line macro parameters to be cycled.

Added the *' option for the maximum parameter count on multi-line macros, allowing them to take
arbitrarily many parameters.

Added the ability for the user—level forms of EXTERN, GLOBAL and COMMON to take more than one
argument.

Added the IMPORT and EXPORT directives in OBJ format, to deal with Windows DLLs.

Added some more preprocessdrf constructssifidn / $ifidni (exact textual identity), angifid
[%$ifnum/%$1ifstr (token type testing).

Added the ability to distinguish SHL AX,1 (the 8086 version) from SHL AXBYTE 1 (the
286—and-upwards version whose constant happens to be 1).

Added NetBSD/FreeBSD/OpenBSD’s variant of a.out format, complete with PIC shared library features.

Changed NASM'’s idiosyncratic handling of FCLEX, FDISI, FENI, FINIT, FSAVE, FSTCW, FSTENV,

and FSTSW to bring it into line with the otherwise accepted standard. The previous behaviour, though it
was a deliberate feature, was a deliberate feature based on a misunderstanding. Apologies for the
inconvenience.

Improved the flexibility of ABSOLUTE: you can now give it an expression rather than being restricted to a
constant, and it can take relocatable arguments as well.

Added the ability for a variable to be declared as EXTERN multiple times, and the subsequent definitions
are just ignored.

247

248

We now allow instruction prefixes (CS, DS, LOCK, REPZ etc) to be alone on a line (without a following
instruction).

Improved sanity checks on whether the arguments to EXTERN, GLOBAL and COMMON are valid
identifiers.

Added misc/exebin.mac to allow direct generation of .EXE files by hacking up an EXE header using DB
and DW; also added test/binexe.asm to demonstrate the use of this. Thanks to Yann Guidon for
contributing the EXE header code.

ndisasm forgot to check whether the input file had been successfully opened. Now it does. Doh!
Added the Cyrix extensions to the MMX instruction set.

Added a hinting mechanism to allow [EAX+EBX] and [EBX+EAX] to be assembled differently. This is
important since [ESI+EBP] and [EBP+ESI] have different default base segment registers.

Added support for the PharLap OMF extension for 4096-byte segment alignment.

C.3.3 Version 0.95 released July 1997

Fixed yet another ELF bug. This one manifested if the user relied on the default segment, and attempted to
define global symbols without first explicitly declaring the target segment.

Added makefiles (for NASM and the RDF tools) to build Win32 console apps under Symantec C++.
Donated by Mark Junker.

Added ‘macros.bas’ and ‘insns.bas’, QBasic versions of the Perl scripts that convert ‘standard.mac’ to
‘macros.c’ and convert ‘insns.dat’ to ‘insnsa.c’ and ‘insnsd.c’. Also thanks to Mark Junker.

Changed the diassembled forms of the conditional instructions so that JB is now emitted as JC, and other
similar changes. Suggested list by Ulrich Doewich.

Added ‘@’ to the list of valid characters to begin an identifier with.

Documentary changes, notably the addition of the ‘Common Problems’ section in nasm.doc.

Fixed a bug relating to 32-hit PC-relative fixups in OBJ.

Fixed a bug in perm_copy() in labels.c which was causing exceptions in cleanup_labels() on some systems.

Positivity sanity check in TIMES argument changed from a warning to an error following a further
complaint.

Changed the acceptable limits on byte and word operands to allow things like ‘~10111001b’ to work.

Fixed a major problem in the preprocessor which caused seg-faults if macro definitions contained blank
lines or comment-only lines.

Fixed inadequate error checking on the commas separating the arguments to ‘db’, ‘dw’ etc.
Fixed a crippling bug in the handling of macros with operand counts defined with a ‘+’ modifier.

Fixed a bug whereby object file formats which stored the input file name in the output file (such as OBJ
and COFF) weren't doing so correctly when the output file name was specified on the command line.

Removed [INC] and [INCLUDE] support for good, since they were obsolete anyway.

Fixed a bug in OBJ which caused all fixups to be output in 16-bit (old—format) FIXUPP records, rather
than putting the 32-bit ones in FIXUPP32 (new—format) records.

Added, tentatively, OS/2 object file support (as a minor variant on OBJ).
Updates to Fox Cutter's Borland C makefile, Makefile.bc2.
Removed a spurious second fclose() on the output file.

Added the ‘=s’ command line option to redirect all messages which would go to stderr (errors, help text) to
stdout instead.

Added the ‘~w’ command line option to selectively suppress some classes of assembly warning messages.
Added the ‘—p’ pre-include and ‘~d’ pre-define command-line options.
Added an include file search path: the ‘=i’ command line option.

Fixed a silly little preprocessor bug whereby starting a line with a ‘%! environment-variable reference
caused an ‘unknown directive’ error.

Added the long—awaited listing file support: the ‘~I' command line option.

Fixed a problem with OBJ format whereby, in the absence of any explicit segment definition, non-global
symbols declared in the implicit default segment generated spurious EXTDEF records in the output.

Added the NASM environment variable.

From this version forward, Win32 console—-mode binaries will be included in the DOS distribution in
addition to the 16-hit binaries. Added Makefile.vc for this purpose.

Added ‘return 0O;’ to test/objlink.c to prevent compiler warnings.
Added the _ NASM_MAJOR___and _ NASM_MINOR___ standard defines.

Added an alternative memory-reference syntax in which prefixing an operand with ‘&’ is equivalent to
enclosing it in square brackets, at the request of Fox Cutter.

Errors in pass two now cause the program to return a non-zero error code, which they didn’t before.

Fixed the single-line macro cycle detection, which didn’'t work at all on macros with no parameters
(caused an infinite loop). Also changed the behaviour of single-line macro cycle detection to work like
cpp, so that macros like ‘extrn’ as given in the documentation can be implemented.

Fixed the implementation of WRT, which was too restrictive in that you couldn’t do ‘mov ax,[di+abc wrt
dgroup]’ because (di+abc) wasn't a relocatable reference.

C.3.4 Version 0.94 released April 1997

Major item: added the macro processor.

Added undocumented instructions SMI, IBTS, XBTS and LOADALL286. Also reorganised CMPXCHG
instruction into early—486 and Pentium forms. Thanks to Thobias Jones for the information.

Fixed two more stupid bugs in ELF, which were causing ‘Id’ to continue to seg—fault in a lot of non-trivial
cases.

Fixed a seg—fault in the label manager.

Stopped FBLD and FBSTP from _requiring_ the TWORD keyword, which is the only option for BCD
loads/stores in any case.

Ensured FLDCW, FSTCW and FSTSW can cope with the WORD keyword, if anyone bothers to provide
it. Previously they complained unless no keyword at all was present.

249

250

Some forms of FDIV/FDIVR and FSUB/FSUBR were still inverted: a vestige of a bug that | thought had
been fixed in 0.92. This was fixed, hopefully for good this time...

Another minor phase error (insofar as a phase error can _ever_ be minor) fixed, this one occurring in code
of the form

rol ax, forward_reference
forward_reference equ 1

The number supplied to TIMES is now sanity—checked for positivity, and also may be greater than 64K
(which previously didn’t work on 16-bit systems).

Added Watcom C makefiles, and misc/pmw.bat, donated by Dominik Behr.
Added the INCBIN pseudo-opcode.

Due to the advent of the preprocessor, the [INCLUDE] and [INC] directives have become obsolete. They
are still supported in this version, with a warning, but won't be in the next.

Fixed a bug in OBJ format, which caused incorrect object records to be output when absolute labels were
made global.

Updates to RDOFF subdirectory, and changes to outrdf.c.

C.3.5 Version 0.93 released January 1997

This release went out in a great hurry after semi—crippling bugs were found in 0.92.

Reallydid fix the stack overflows this time. *blush*

Had problems with EA instruction sizes changing between passes, when an offset contained a forward
reference and so 4 bytes were allocated for the offset in pass one; by pass two the symbol had been defined
and happened to be a small absolute value, so only 1 byte got allocated, causing instruction size mismatch
between passes and hence incorrect address calculations. Fixed.

Stupid bug in the revised ELF section generation fixed (associated string—table section for .symtab was
hard—coded as 7, even when this didn't fit with the real section table). Was causing ‘Id’ to seg—fault under
Linux.

Included a new Borland C makefile, Makefile.bc2, donated by Fox Cutter <Imb@comtch.iea.com>.

C.3.6 Version 0.92 released January 1997

The FDIVP/FDIVRP and FSUBP/FSUBRP pairs had been inverted: this was fixed. This also affected the
LCC driver.

Fixed a bug regarding 32-bit effective addresses of the fartther_register+ESP].

Documentary changes, notably documentation of the fact that Borland Win32 compilers use ‘obj’ rather
than ‘win32’ object format.

Fixed the COMENT record in OBJ files, which was formatted incorrectly.
Fixed a bug causing segfaults in large RDF files.

OBJ format now strips initial periods from segment and group definitions, in order to avoid complications
with the local label syntax.

Fixed a bug in disassembling far calls and jumps in NDISASM.

« Added support for user—defined sections in COFF and ELF files.

« Compiled the DOS binaries with a sensible amount of stack, to prevent stack overflows on any arithmetic
expression containing parentheses.

« Fixed a bug in handling of files that do not terminate in a newline.

C.3.7 Version 0.91 released November 1996
« Loads of bug fixes.
e Support for RDF added.
« Support for DBG debugging format added.
« Support for 32-bit extensions to Microsoft OBJ format added.
* Revised for Borland C: some variable names changed, makefile added.
» LCC support revised to actually work.
* JMP/CALL NEAR/FAR notation added.
e ‘al6’, ‘'0l6’, ‘a32’ and ‘032’ prefixes added.
« Range checking on short jumps implemented.
* MMX instruction support added.
« Negative floating point constant support added.
* Memory handling improved to bypass 64K barrier under DOS.
« S prefix to force treatment of reserved words as identifiers added.
« Default-size mechanism for object formats added.
« Compile-time configurability added.
e #,@,~and c{?} are now valid characters in labels.
e —e and-k options in NDISASM added.

C.3.8 Version 0.90 released October 1996

First release version. First support for object file output. Other changes from previous version (0.3x) too
numerous to document.

251

Index

! operator, unary 38 300 51
! = operator 55 %+1 and%-1 syntax 53
$$ token 37, 96 16-bit mode, versus 32-bit mode 76
$ 64-bit displacement 126
Here token 37 64-bit immediate 125
prefix 29, 33, 99 —a option 24,132
% operator 38 Al6 29
%! 67 alé 123
$$ andsss prefixes 60,61 A32 29
%% operator 38, 48 a32 123
S+ 43 A64 29
%2 44 a64 123
%27 44 a86 16, 26, 27, 28
$[43 ABS 33,77
& operator 37 ABSOLUTE 78, 85
&& operator 55 addition 37
* operator 38 addressing, mixed-size 122
+ modifier 49 address-size prefixes 29
+ operator algebra 32
binary 37 ALIGN 72,74, 83, 85
unary 38 smart 74
— operator ALIGNB 72
binary 37 alignment
unary 38 in bin sections 83
. . @ symbol prefix 40, 48 in el £ sections 96
/ operator 38 in obj sections 85
// operator 38 inwin32 sections 89
< operator 55 of el £ common variables 98
<< operator 37 ALIGNMODE 74
<= operator 55 __ALIGNMODE_ _ 75
<> operator 55 ALINK 102
= operator 55 alink.sourceforge.net 102
== operator 55 all 25
> operator 55 alloc 95
>= operator 55 alternate register names 74
>> operator 37 alt.lang.asm 16
? MASM syntax 30 altreg 74
~ operator 37 ambiguity 27
~~ operator 55 a.out
| operator 37 BSD version 98
| | operator 55 Linux version 98
~ operator 38 aout 98
%0 parameter count 50,51 aoutb 98, 117

252

$arg
arg
as86
assembler directives
assembly-time options
%$assign
ASSUME
AT
Autoconf
autoexec.bat
auto—-sync
-b
bin

multisection
binary
binary files
bit shift
BITS
__BITS_
bitwise AND
bitwise OR
bitwise XOR
block IFs
BND
bnd
boot loader
boot sector
Borland

Pascal

Win32 compilers
braces

afters sign

around macro parameters
BSD
.bss
bugs
bugtracker
BYTE
C calling convention
C symbol names
cl6.mac
c32.mac
CALL FAR
case sensitivity
changing sections
character constant
character strings
circular references
CLASS

64
110, 117
16, 99
76
23
44
27
71
18
17
132
131
20, 82
83
33
31
37
76, 82
68
37
37
37
62
77
25
82
128

111
84

52
47

117

96, 98, 99

129

129

128
107, 114
105

110, 113

117

39

26,41, 42, 44, 47, 56, 86

77
30, 35
34
41
85

%clear 67
coff 95
colon 29
.COM 82, 104
comma 50
command-line 19, 82
commas in macro parameters 49
%$comment 67
.comment 96
COMMON 80, 85
elf extensions to 98
ob7j extensions to 88
Common Object File Format 95
common variables 80
alignmentinelf 98
element size 88
comp.lang.asm.x86 16, 17
comp.os.msdos.programmer 105
concatenating macro parameters 52
concatenating strings 45
condition codes as macro parameters 53
conditional assembly 54
conditional jumps 128
conditional-return macro 53
configure 18
constants 33
context fall-through lookup 61
context stack 60, 62
context-local labels 60
context-local single-line macros 61
counting macro parameters 51
CPU 80
CPUID 35
creating contexts 60
critical expression 30, 39, 45, 79
-D option 23
—d option 23
daily development snapshots 17
.data 96, 98, 99
_DATA 107
data 97, 100
data structure 109, 116
__DATE___ 69
__DATE_NUM___ 69
DB 30, 35
dbg 100
DD 30, 35
debug information 21
debug information format 21

253

254

decimal

declaring structures

DEFAULT

default

default macro parameters

default name

default-wRT mechanism

$define

defining sections

$defstr

$deftok

$depend

design goals

DevPac

disabling listing expansion

division

DJGPP

djlink

DLL symbols
exporting
importing

DO

DOS

DOS archive

DOS source archive

DQ

.drectve

DT

DUP

DW

DWORD

DY

DZ

—E option

—e option

effective addresses

element size, in common variables

ELF
shared libraries
16-bit code and

elf, debug formats and

elf32

elfé64

elfx32

%$elif

$elifctx

%$elifdef

$elifempty

%$elifenv

33
70
77
97
50
82
88
23,41
77
45
45
59
26
31,40
53
38
95, 114
102

87
86
30, 35
17,22

17
30, 35
89
30, 35
28,31
30, 35
30
30, 35
30
23
23, 133

29, 32

88

95

96

98

98
95
95
95
54, 55, 56
55
54
57
57

%$elifid
$elifidn
%$elifidni
$elifmacro
%$elifn
$elifnctx
$elifndef
$elifnempty
$elifnenv
$elifnid
%$elifnidn
$elifnidni
$elifnmacro
$elifnnum
$elifnstr
$elifntoken
$elifnum
$elifstr
$eliftoken
$else
endproc
$endrep
ENDSTRUC
environment
EQU
$error
error
error messages
error reporting format
escape sequences
EVEN
exact matches
.EXE
EXE2BIN
EXE_begin
exebin.mac
exec
Executable and Linkable Format
EXE_end
EXE_stack
$exitrep
EXPORT
export
exporting symbols
expressions
extension
EXTERN
ob7j extensions to
rdf extensions to

57
56
56
55
54, 56
55
54
57
57
57
56
56
55
57
57
57
57
57
57
54
110, 117
58
70,79
26
30, 31
65
25
22
21
34
72
53
84, 102
105
103
103
96
95
103
103
58
87
100
80
23, 37
19, 82
79
87
100

extracting substrings
—F option
—f£ option
far call
far common variables
far pointer
FARCODE
$fatal
__FILE___
FLAT
flat memory model
flat—form binary
FLOAT
__FLOAT_
__floatl28h___
__floatl1281_
_ floatle_
_ float32___
_ _floato6d_
_ float8___
_ float80e_
_ float80m___
__FLOAT_DAZ___
float-denorm
floating—point
constants
packed BCD constants
floating—point
float-overflow
__ _FLOAT_ROUND___
float-toolong
float-underflow
follows=
format—specific directives
fp
frame pointer
FreeBSD
FreeLink
ftp.simtel.net
function
functions
C calling convention

Pascal calling convention

—g option
gas
gcc

46
21
20, 82
27
88
39
110, 113
65
68
85
114
82
81
81
35
35
35
35
35
35
35
35
81
25

35,81
37
28, 30, 35
25
81
25
25
83
76
75
107, 111, 114
98, 117
102
102
97, 100

107, 114
111

21

16

16

GLOBAL
aoutb extensions to
elf extensions to
rdf extensions to

global offset table

_GLOBAL_OFFSET_TABLE_

gnu-elf-extensions

. .got

GOT relocations

GOT

..gotoff

GOTOFF relocations

. .gotpc

GOTPC relocations

..gottpoff

graphics

greedy macro parameters

GROUP

groups

-h

hexadecimal

hidden

hle

hybrid syntaxes

—I option

—1i option

$iassign

$idefine

$idefstr

$ideftok

IEND

$if

$ifctx

$ifdef

$ifempty

$ifenv

$ifid

$ifidn

$ifidni

$ifmacro

%$ifn

$ifnctx

$ifndef

$ifnempty

$ifnenv

$ifnid

$ifnidn

$ifnidni

$ifnmacro

80
97
97
100
117
96
25
96
119
96, 117
96
119
96
118
97
31
48
86
38
131
33
97
25
27
22
22,132
44
41
45
45
71
54, 55
55, 62
54
57
57
56
56
56
55
54, 56
55
54
57
57
57
56
56
55

255

256

$ifnnum
$ifnstr
$ifntoken
$ifnum
$ifstr
$iftoken
ifunc

IMPORT
import library
importing symbols
INCBIN

$include

include search path
including other files
inefficient code

infinite loop

_ Infinity_
infinity

informational section
INSTALL

installing

instances of structures
instruction list

integer functions
integer logarithms
intel hex

Intel number formats
internal

ISTRUC

iterating over macro parameters
ith

$ixdefine

Jcc NEAR

JMP DWORD

jumps, mixed-size

-k

-1 option

label preceeding macro
label prefix

last

.1lbss

1d86

.ldata

57
57
57
56
56
57
75
75
75
75
75
75
46
86
86
79
30, 31, 35
22, 23,59
22
59
128
37
36
36
89
18
17
71
134
38,75
75
84
36
97
71
51
84
42
128
122
122
133
20
51
40
50
96
99
96

LIBRARY
license
%$1line

_ LINE___

linker, free
Linux

a.out

as86

ELF
listing file
little—endian
$local
local labels
lock
logical AND
logical negation
logical OR
logical XOR
.lrodata
—M option
Mach, object file format
Mach-O
macho
macho32
macho64
MacOS X
$macro
macro indirection
macro library
macro parameters range
macro processor
macro—-defaults
macro-local labels
macro—params
macros
macro—-selfref
make
makefile dependencies
makefiles
man pages
map files
MASM
MASM
—MD option
memory models
memory operand
memory references
—MF option
—MG option

99
16
66
68
102

98
99
95
20
35
65
39
25
55
38
55
55
96
20
95
95
95
95
95
95
46
43
22
49
41
25
48
25
31
25
18
20
17,18
18
83
16
26,31, 84
21
27, 106
30
26, 32
20
20

Microsoft OMF

minifloat

Minix

misc subdirectory
mixed-language program
mixed-size addressing
mixed-size instruction
MMX registers

ModR/M byte

MODULE

modulo operators
motorola s—records

—MP option

—MQ option

MS-DOS

MS-DOS device drivers
—MT option

multi-line macros
multipass optimization
multiple section names
multiplication
multipush macro
multisection

_ NaN___

NaN

NASM version

nasm version history
nasm version id

nasm version string
nasm.1
__NASMDEFSEG
nasm—-devel
NASMENV

nasm.exe

nasm —-hf
__NASM_MAJOR___
__NASM_MINOR___
nasm.out
____NASM_PATCHLEVEL_ _
__NASM_SNAPSHOT___
__NASM_SUBMINOR___
__NASM_VER___
__NASM_VERSION_ID_ _
nasm—-XXX-dos.zip
nasm-XXX.tar.gz
nasm—-XXX-win32.zip
nasm—-XXX.zip
ndisasm

ndisasm.1

84
36
99
103, 110, 117
105
122
122

99
38
84

21
21
82
105
21
25,46
24
82
38
51
83
36
36
67
220
68
68

18

84

17

26

17

20

67

67

20

67

67

67

68

68

17

18

17

17

131

18

ndisasm.exe

near call

near common variables

NetBSD

new releases

noalloc

nobits

NOBND

noexec

.nolist

‘nowait’

nowrite

number-overflow

numeric constants

-0 option

—o option

0l6

olé6

032

032

064

.OBJ

obj

object

octal

OF_DBG

OF_DEFAULT

OFFSET

OMF

omitted parameters

one’s complement

OpenBSD

operands

operand-size prefixes

operating system
writing

operators

ORG

orphan-labels

0Ss/2

osabi

other preprocessor directives

out of range, jumps

output file format

output formats

__OUTPUT_FORMAT_ _

overlapping segments

OVERLAY

17
27
88
98, 117
17
95
83, 96
77
96
53
28
96
25
30, 33
24
19,131
29
124
29
124
29
102
84
97, 100
33
100
20
27
84
50
38
98, 117
29
29
82
122
37
82, 104, 105, 128
25,29
84, 85
95
66
128
20
82
69
38
85

257

258

overloading

multi-line macros

single-line macros
—P option
—p option
paradox
PASCAL
Pascal calling convention
__PASS___
passes, assembly
PATH
$pathsearch
period
Perl
perverse
PharLap
PIC
..plt
PLT relocations
plt relocations
$pop
position—-independent code
——postfix
precedence
pre—defining macros
preferred
——prefix
pre-including files
preprocess—only mode
preprocessor
preprocessor expressions
preprocessor loops
preprocessor variables
primitive directives
PRIVATE
proc
procedure linkage table
processor mode
progbits
program entry point
program origin
protected
pseudo-instructions
PUBLIC
pure binary
$push
__QONaN__
quick start
QWORD

47
42
23
23,59
39
113
111
70

17
22,59
39
18
22
85
96, 98, 117
96
97, 119, 120
120
60
96, 98, 117
26
37
23, 42
38
26
23
23
23, 24,31, 38, 41
23
58
44
76
85
100, 110, 117
97, 119, 120
76
83, 96
87, 102
82
97
30
80, 85
82
60
36
26
30

-r
rdf
rdof £ subdirectory
redirecting errors
REL
relational operators
release candidates
Relocatable Dynamic Object File Format
relocations, PIC-specific
removing contexts
renaming contexts
$rep
repeating
$repl
reporting bugs
RESB
RESD
RESO
RESQ
REST
RESW
RESY
RESZ
.rodata
$rotate
rotating macro parameters
—s option
searching for include files
__SECT___
SECTALIGN
SECTION
elf extensions to
win32 extensions to
section alignment
inbin
inelf
in obj
inwin32
section, bin extensions to
SEG
SEGMENT
elf extensions to
segment address
segment alignment
inbin
in obj
segment names, Borland Pascal
segment override

131
99
18, 99

22
33, 77
55
17
99
96
60
62
31, 58
31, 58
62
129
28, 30
30
30
30
30
30
30
30
96
51
51
22,132
59
78,79
73
77
95
89

83
96
85
89

83
38, 84
77

85
38

83
85
113
27,29

segments 38 symbols

groups of 86 exporting from DLLs 87
separator character 26 importing from DLLs 86
shared libraries 98,117 synchronisation 132
shared library 97 .SYS 82, 105
shift command 51 -t 24
SIB byte TASM 16, 24
signed division 38 tasm 26, 84
signed modulo 38 .tbss 96
single-line macros 41 TBYTE 28
size, of symbols 97 .tdata 96
smartalign 74 test subdirectory 102
__SNaN__ 36 testing
shapshots, daily development 17 arbitrary numeric expressions 55
Solaris x86 95 context stack 55
—soname 121 exact text identity 56
sound 31 multi-line macro existence 55
source code 17 single-line macro existence 54
source-listing file 20 token types 56
square brackets 26,32 .text 96, 98, 99
srec 84 _TEXT 107
STACK 85 thread local storage 97
stack relative preprocessor directives 64 _ TIME_ 69
%stacksize 64 __ _TIME_NUM___ 69
standard macro packages 74 TIMES 30, 31, 39, 128, 129
standard macros 67 TLINK 105
standardized section names 77,89, 95,98,99t1s 96, 97
..start 87, 102 ..tlsie 97
start= 83 trailing colon 29
stderr 22 TWORD 28, 30
stdout 22 type, of symbols 97
$strcat 45 —U option 23
STRICT 39 —u option 23,131
string constant 30 unary operators 38
string constants 35 %undef 23, 44
string length 46 undefining macros 23
string manipulation in macros 45 underscore, in C symbols 105
strings 34 Unicode 34, 35
$strlen 46 uninitialized 30
STRUC 70,79, 109, 116 uninitialized storage 28
stub preprocessor 24 Unix 18
%$substr 46 SCO 95
subtraction 37 source archive 18
suppressible warning 25 System V 95
suppressing preprocessing 24 UnixWare 95
switching between sections 77 S%unmacro 53
..sym 96 unrolled loops 31
symbol sizes, specifying 97 unsigned division 38
symbol types, specifying 97 unsigned modulo 38

259

260

UPPERCASE
%use
__USE_*___

USEL16

USE32

user

user—defined errors
user—level assembler directives
user—level directives

_ UTC_DATE_

_ UTC_DATE_NUM___

_ UTC_TIME_

_ UTC_TIME_NUM___
UTF-16

UTF-32

UTF-8

utfle

__utflébe_
__utflele_

utf32

__utf32be_
__utf32le_

—v option

VAL

valid characters

variable types

version

version number of NASM
viollows=

Visual C++

vstart=

—W option

—w option

$warning

warnings

[warning *warning-name]
[warning +warning-name]
[warning —-warning-name]
website

win64

Win64

Windows

Windows 95

Windows NT

write

writing operating systems

WRT

WRT ..got

WRT ..gotoff

26, 86
60, 74
69
77,85
77,85
25
65
67
76
69
69
69
69
35
35
34
35
35
35
35
35
35
25
102
29
27
25
67
83
88
83
24
24
65
24
25
25
25
17
91, 125
84, 88, 114
102

96

122

38, 84, 96, 97, 99
119
119

WRT ..gotpc

WRT ..plt
WRT ..sym
WWW page

WWW.Cpan.org
www.delorie.com
WWW.pCcorner.com
—-X option
x2ftp.oulu.fi
x32

$xdefine

—y option

-2 option

118
120
120

18
102
102

21
102

95

42

26
22

	Title
	Contents
	Introduction
	What Is NASM?
	Why Yet Another Assembler?
	License Conditions

	Contact Information
	Installation
	Installing NASM under MS-DOS or Windows
	Installing NASM under Unix

	Running NASM
	NASM Command-Line Syntax
	The -o Option: Specifying the Output File Name
	The -f Option: Specifying the Output File Format
	The -l Option: Generating a Listing File
	The -M Option: Generate Makefile Dependencies
	The -MG Option: Generate Makefile Dependencies
	The -MF Option: Set Makefile Dependency File
	The -MD Option: Assemble and Generate Dependencies
	The -MT Option: Dependency Target Name
	The -MQ Option: Dependency Target Name (Quoted)
	The -MP Option: Emit phony targets
	The -F Option: Selecting a Debug Information Format
	The -g Option: Enabling Debug Information.
	The -X Option: Selecting an Error Reporting Format
	The -Z Option: Send Errors to a File
	The -s Option: Send Errors to stdout
	The -i Option: Include File Search Directories
	The -p Option: Pre-Include a File
	The -d Option: Pre-Define a Macro
	The -u Option: Undefine a Macro
	The -E Option: Preprocess Only
	The -a Option: Don't Preprocess At All
	The -O Option: Specifying Multipass Optimization
	The -t Option: Enable TASM Compatibility Mode
	The -w and -W Options: Enable or Disable Assembly Warnings
	The -v Option: Display Version Info
	The -y Option: Display Available Debug Info Formats
	The --prefix and --postfix Options.
	The NASMENV Environment Variable

	Quick Start for MASM Users
	NASM Is Case-Sensitive
	NASM Requires Square Brackets For Memory References
	NASM Doesn't Store Variable Types
	NASM Doesn't ASSUME
	NASM Doesn't Support Memory Models
	Floating-Point Differences
	Other Differences

	The NASM Language
	Layout of a NASM Source Line
	Pseudo-Instructions
	DB and Friends: Declaring Initialized Data
	RESB and Friends: Declaring Uninitialized Data
	INCBIN: Including External Binary Files
	EQU: Defining Constants
	TIMES: Repeating Instructions or Data

	Effective Addresses
	Constants
	Numeric Constants
	Character Strings
	Character Constants
	String Constants
	Unicode Strings
	Floating-Point Constants
	Packed BCD Constants

	Expressions
	|: Bitwise OR Operator
	^: Bitwise XOR Operator
	&: Bitwise AND Operator
	<< and >>: Bit Shift Operators
	+ and -: Addition and Subtraction Operators
	*, /, //, % and %%: Multiplication and Division
	Unary Operators

	SEG and WRT
	STRICT: Inhibiting Optimization
	Critical Expressions
	Local Labels

	The NASM Preprocessor
	Single-Line Macros
	The Normal Way: %define
	Resolving %define: %xdefine
	Macro Indirection: %[...]
	Concatenating Single Line Macro Tokens: %+
	The Macro Name Itself: %? and %??
	Undefining Single-Line Macros: %undef
	Preprocessor Variables: %assign
	Defining Strings: %defstr
	Defining Tokens: %deftok

	String Manipulation in Macros
	Concatenating Strings: %strcat
	String Length: %strlen
	Extracting Substrings: %substr

	Multi-Line Macros: %macro
	Overloading Multi-Line Macros
	Macro-Local Labels
	Greedy Macro Parameters
	Macro Parameters Range
	Default Macro Parameters
	%0: Macro Parameter Counter
	%00: Label Preceeding Macro
	%rotate: Rotating Macro Parameters
	Concatenating Macro Parameters
	Condition Codes as Macro Parameters
	Disabling Listing Expansion
	Undefining Multi-Line Macros: %unmacro

	Conditional Assembly
	%ifdef: Testing Single-Line Macro Existence
	%ifmacro: Testing Multi-Line Macro Existence
	%ifctx: Testing the Context Stack
	%if: Testing Arbitrary Numeric Expressions
	%ifidn and %ifidni: Testing Exact Text Identity
	%ifid, %ifnum, %ifstr: Testing Token Types
	%iftoken: Test for a Single Token
	%ifempty: Test for Empty Expansion
	%ifenv: Test If Environment Variable Exists

	Preprocessor Loops: %rep
	Source Files and Dependencies
	%include: Including Other Files
	%pathsearch: Search the Include Path
	%depend: Add Dependent Files
	%use: Include Standard Macro Package

	The Context Stack
	%push and %pop: Creating and Removing Contexts
	Context-Local Labels
	Context-Local Single-Line Macros
	Context Fall-Through Lookup
	%repl: Renaming a Context
	Example Use of the Context Stack: Block IFs

	Stack Relative Preprocessor Directives
	%arg Directive
	%stacksize Directive
	%local Directive

	Reporting User-Defined Errors: %error, %warning, %fatal
	Other Preprocessor Directives
	%line Directive
	%!<env>: Read an environment variable.

	Comment Blocks: %comment
	Standard Macros
	NASM Version Macros
	__NASM_VERSION_ID__: NASM Version ID
	__NASM_VER__: NASM Version string
	__FILE__ and __LINE__: File Name and Line Number
	__BITS__: Current BITS Mode
	__OUTPUT_FORMAT__: Current Output Format
	Assembly Date and Time Macros
	__USE_package__: Package Include Test
	__PASS__: Assembly Pass
	STRUC and ENDSTRUC: Declaring Structure Data Types
	ISTRUC, AT and IEND: Declaring Instances of Structures
	ALIGN and ALIGNB: Data Alignment
	SECTALIGN: Section Alignment

	Standard Macro Packages
	altreg: Alternate Register Names
	smartalign: Smart ALIGN Macro
	fp: Floating-point macros
	ifunc: Integer functions
	Integer logarithms

	Assembler Directives
	BITS: Specifying Target Processor Mode
	USE16 & USE32: Aliases for BITS

	DEFAULT: Change the assembler defaults
	REL & ABS: RIP-relative addressing
	BND & NOBND: BND prefix

	SECTION or SEGMENT: Changing and Defining Sections
	The __SECT__ Macro

	ABSOLUTE: Defining Absolute Labels
	EXTERN: Importing Symbols from Other Modules
	GLOBAL: Exporting Symbols to Other Modules
	COMMON: Defining Common Data Areas
	CPU: Defining CPU Dependencies
	FLOAT: Handling of floating-point constants

	Output Formats
	bin: Flat-Form Binary Output
	ORG: Binary File Program Origin
	bin Extensions to the SECTION Directive
	Multisection Support for the bin Format
	Map Files

	ith: Intel Hex Output
	srec: Motorola S-Records Output
	obj: Microsoft OMF Object Files
	obj Extensions to the SEGMENT Directive
	GROUP: Defining Groups of Segments
	UPPERCASE: Disabling Case Sensitivity in Output
	IMPORT: Importing DLL Symbols
	EXPORT: Exporting DLL Symbols
	..start: Defining the Program Entry Point
	obj Extensions to the EXTERN Directive
	obj Extensions to the COMMON Directive

	win32: Microsoft Win32 Object Files
	win32 Extensions to the SECTION Directive
	win32: Safe Structured Exception Handling

	win64: Microsoft Win64 Object Files
	win64: Writing Position-Independent Code
	win64: Structured Exception Handling

	coff: Common Object File Format
	macho32 and macho64: Mach Object File Format
	elf32, elf64, elfx32: Executable and Linkable Format Object Files
	ELF specific directive osabi
	elf Extensions to the SECTION Directive
	Position-Independent Code: elf Special Symbols and WRT
	Thread Local Storage: elf Special Symbols and WRT
	elf Extensions to the GLOBAL Directive
	elf Extensions to the COMMON Directive
	16-bit code and ELF
	Debug formats and ELF

	aout: Linux a.out Object Files
	aoutb: NetBSD/FreeBSD/OpenBSD a.out Object Files
	as86: Minix/Linux as86 Object Files
	rdf: Relocatable Dynamic Object File Format
	Requiring a Library: The LIBRARY Directive
	Specifying a Module Name: The MODULE Directive
	rdf Extensions to the GLOBAL Directive
	rdf Extensions to the EXTERN Directive

	dbg: Debugging Format

	Writing 16-bit Code (DOS, Windows 3/3.1)
	Producing .EXE Files
	Using the obj Format To Generate .EXE Files
	Using the bin Format To Generate .EXE Files

	Producing .COM Files
	Using the bin Format To Generate .COM Files
	Using the obj Format To Generate .COM Files

	Producing .SYS Files
	Interfacing to 16-bit C Programs
	External Symbol Names
	Memory Models
	Function Definitions and Function Calls
	Accessing Data Items
	c16.mac: Helper Macros for the 16-bit C Interface

	Interfacing to Borland Pascal Programs
	The Pascal Calling Convention
	Borland Pascal Segment Name Restrictions
	Using c16.mac With Pascal Programs

	Writing 32-bit Code (Unix, Win32, DJGPP)
	Interfacing to 32-bit C Programs
	External Symbol Names
	Function Definitions and Function Calls
	Accessing Data Items
	c32.mac: Helper Macros for the 32-bit C Interface

	Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries
	Obtaining the Address of the GOT
	Finding Your Local Data Items
	Finding External and Common Data Items
	Exporting Symbols to the Library User
	Calling Procedures Outside the Library
	Generating the Library File

	Mixing 16 and 32 Bit Code
	Mixed-Size Jumps
	Addressing Between Different-Size Segments
	Other Mixed-Size Instructions

	Writing 64-bit Code (Unix, Win64)
	Register Names in 64-bit Mode
	Immediates and Displacements in 64-bit Mode
	Interfacing to 64-bit C Programs (Unix)
	Interfacing to 64-bit C Programs (Win64)

	Troubleshooting
	Common Problems
	NASM Generates Inefficient Code
	My Jumps are Out of Range
	ORG Doesn't Work
	TIMES Doesn't Work

	Bugs

	Ndisasm
	Introduction
	Getting Started: Installation
	Running NDISASM
	COM Files: Specifying an Origin
	Code Following Data: Synchronisation
	Mixed Code and Data: Automatic (Intelligent) Synchronisation
	Other Options

	Bugs and Improvements

	Instruction List
	Introduction
	Special instructions...
	Conventional instructions
	Katmai Streaming SIMD instructions (SSE ŒŒ a.k.a. KNI, XMM, MMX2)
	Introduced in Deschutes but necessary for SSE support
	XSAVE group (AVX and extended state)
	Generic memory operations
	New MMX instructions introduced in Katmai
	AMD Enhanced 3DNow! (Athlon) instructions
	Willamette SSE2 Cacheability Instructions
	Willamette MMX instructions (SSE2 SIMD Integer Instructions)
	Willamette Streaming SIMD instructions (SSE2)
	Prescott New Instructions (SSE3)
	VMX/SVM Instructions
	Extended Page Tables VMX instructions
	Tejas New Instructions (SSSE3)
	AMD SSE4A
	New instructions in Barcelona
	Penryn New Instructions (SSE4.1)
	Nehalem New Instructions (SSE4.2)
	Intel SMX
	Geode (Cyrix) 3DNow! additions
	Intel new instructions in ???
	Intel AES instructions
	Intel AVX AES instructions
	Intel AVX instructions
	Intel Carry-Less Multiplication instructions (CLMUL)
	Intel AVX Carry-Less Multiplication instructions (CLMUL)
	Intel Fused Multiply-Add instructions (FMA)
	Intel post-32 nm processor instructions
	VIA (Centaur) security instructions
	AMD Lightweight Profiling (LWP) instructions
	AMD XOP and FMA4 instructions (SSE5)
	Intel AVX2 instructions
	Transactional Synchronization Extensions (TSX)
	Intel BMI1 and BMI2 instructions, AMD TBM instructions
	Intel AVX-512 instructions
	Systematic names for the hinting nop instructions

	NASM Version History
	NASM 2 Series
	Version 2.11.02
	Version 2.11.01
	Version 2.11
	Version 2.10.09
	Version 2.10.08
	Version 2.10.07
	Version 2.10.06
	Version 2.10.05
	Version 2.10.04
	Version 2.10.03
	Version 2.10.02
	Version 2.10.01
	Version 2.10
	Version 2.09.10
	Version 2.09.09
	Version 2.09.08
	Version 2.09.07
	Version 2.09.06
	Version 2.09.05
	Version 2.09.04
	Version 2.09.03
	Version 2.09.02
	Version 2.09.01
	Version 2.09
	Version 2.08.02
	Version 2.08.01
	Version 2.08
	Version 2.07
	Version 2.06
	Version 2.05.01
	Version 2.05
	Version 2.04
	Version 2.03.01
	Version 2.03
	Version 2.02
	Version 2.01
	Version 2.00

	NASM 0.98 Series
	Version 0.98.39
	Version 0.98.38
	Version 0.98.37
	Version 0.98.36
	Version 0.98.35
	Version 0.98.34
	Version 0.98.33
	Version 0.98.32
	Version 0.98.31
	Version 0.98.30
	Version 0.98.28
	Version 0.98.26
	Version 0.98.25alt
	Version 0.98.25
	Version 0.98.24p1
	Version 0.98.24
	Version 0.98.23
	Version 0.98.22
	Version 0.98.21
	Version 0.98.20
	Version 0.98.19
	Version 0.98.18
	Version 0.98.17
	Version 0.98.16
	Version 0.98.15
	Version 0.98.14
	Version 0.98.13
	Version 0.98.12
	Version 0.98.11
	Version 0.98.10
	Version 0.98.09
	Version 0.98.08
	Version 0.98.09b with John Coffman patches released 28-Oct-2001
	Version 0.98.07 released 01/28/01
	Version 0.98.06f released 01/18/01
	Version 0.98.06e released 01/09/01
	Version 0.98p1
	Version 0.98bf (bug-fixed)
	Version 0.98.03 with John Coffman's changes released 27-Jul-2000
	Version 0.98.03
	Version 0.98
	Version 0.98p9
	Version 0.98p8
	Version 0.98p7
	Version 0.98p6
	Version 0.98p3.7
	Version 0.98p3.6
	Version 0.98p3.5
	Version 0.98p3.4
	Version 0.98p3.3
	Version 0.98p3.2
	Version 0.98p3-hpa
	Version 0.98 pre-release 3
	Version 0.98 pre-release 2
	Version 0.98 pre-release 1

	NASM 0.9 Series
	Version 0.97 released December 1997
	Version 0.96 released November 1997
	Version 0.95 released July 1997
	Version 0.94 released April 1997
	Version 0.93 released January 1997
	Version 0.92 released January 1997
	Version 0.91 released November 1996
	Version 0.90 released October 1996

	Index

