
GANESHA NFS server

Administration guide

v0.4

Wed Oct 8, 2008

Contents

1 How to write the GANESHA’s configuration file 3
1.1 Overall view of the configuration file . 3
1.2 What to put in each block . 4

1.2.1 The EXPORT Block . 4
1.2.2 The FSAL Block . 7
1.2.3 The FileSystem Block . 7
1.2.4 The HPSS Block (Only for use with HPSS/FSAL) 8
1.2.5 The POSIX Block (only for use with a posix filesystem) 8
1.2.6 The SNMP Block (Only for use with SNMP/FSAL) 9
1.2.7 The BUDDY MALLOC Block . 9
1.2.8 The ’CacheInode Hash’ block . 10
1.2.9 The ’CacheInode Client’ block . 10
1.2.10 The ’CacheInode GC Policy’ block . 11
1.2.11 The ’FileContent Client’ config block . 12
1.2.12 The ’FileContent GC Policy’ block . 13
1.2.13 The ’NFS Worker Param’ block . 13
1.2.14 The ’NFS Core Param’ block . 14
1.2.15 The ’NFS DupReq Hash’ block . 14
1.2.16 The ’NFS IP Name’ block . 15
1.2.17 The ’UidMapper Cache’ block . 15
1.2.18 The ’GidMapper Cache’ block . 16
1.2.19 The ’NFSv4 ClientId Cache’ block . 16
1.2.20 The ’NFSv4 StateId Cache’ block . 16
1.2.21 The ’NFS KRB5’ block . 17
1.2.22 The ’NFSv4’ block . 17

1

2 CONTENTS

Chapter 1

How to write the GANESHA’s
configuration file

1.1 Overall view of the configuration file

The configuration file for the GANESHA daemon may seemed huge at first glance. It is separated
into several blocks. A block contain several items.

A block will look like this:

<BLOCK_TAG>
{

<Config_Item_Tag> = <Value> ;

Comment
<Config_Item_Tag> = <Value> ;

.

.

.
<Config_Item_Tag> = <Value> ;

}

As we will see, there are many different blocks, each of them dedicated to the configuration of
a specifc stuff in GANESHA. Not all the blocks are mandatory and some may not be explicitely
specified. In this case, default values will be kept¿ Inside the blocks are items which are a way
to set a internal constant in the daemon with direct effect to the program’s behaviour. Like the
blocks, not all the items are mandatory and some may be lacking. The following sections will
described each blocks and items and explain all of them and their use.

Block’s names and item’s name matching algorithm is case insensitive. Naming a block EX-
PORT or Export or export work as well.

Every character below a ’#’ sign is a comment and will be ignored (except if it is inside a
quoted string, or escaped with a backslash).

You can also include annexe configuration files using %include statement:

E.g:
%include "annexe_file.conf"

3

4 CHAPTER 1. HOW TO WRITE THE GANESHA’S CONFIGURATION FILE

Block Name Status Used for...
EXPORT Mandatory. Can be

duplicated
Set an export entry

FSAL Recommended.
One instance.

FSAL generic configuration

FileSystem Optionnal. One In-
stance

Filesystem’s behaviour

HPSS Recommended.
One instance

FSAL HPSS’s specific configuration (only with
hpss.ganesha.nfsd)

POSIX Recommended.
One instance

FSAL POSIX’s specific configuration (only with
posix.ganesha.nfsd)

SNMP Recommended.
One instance

FSAL SNMP’s specific configuration (only with
snmp.ganesha.nfsd)

NFS Worker Param Recommended.
One instance

Worker Thread configuration

NFS Core Param Recommended.
One instance

Daemon’s core configuration

NFS DupReq Hash Optionnal. One In-
stance

RPC Duplicate Request Hash configuration

NFS IP Name Optionnal. One In-
stance

IPadress↔ hostname resolution cache configura-
tion

NFSv4 ClientId Cache Optionnal. One In-
stance

Configuration of the NFSv4 Clientid cache

NFSv4 StateId Cache Optionnal. One In-
stance

Configuration of the NFSv4 State id cache

NFS KRB5 Recommended for
using KRB5. One
instance

KRB5 configuration. Needed only if sys=krb5,
krb5i or krb5p is used

NFSv4 Recommended.
One instance

NFSv4 Specific configuration items (e.g. lease
lifetime)

CacheInode Hash Recommended.
One instance

Configuration of the Cache Inode Hash Table

CacheInode Client Recommended.
One instance

The configuration of the workers’s clients to the
Cache Inode

CacheInode GC Policy Recommended.
One instance

Garbagge Collection Policy for the Cache Inode
entries

FileContent Client Recommended.
One instance

The configuration of the workers’s client to the
File Content Cache

FileContent GC Policy Recommended.
One instance

Garbagge Collection Policy for the File Content
cache entries

BUDDY MALLOC Recommended.
One instance

Configuration of the internal memory manager

1.2 What to put in each block

1.2.1 The EXPORT Block

This tag is used to describe the way a FSAL tree is exported via NFS. It describes clients, who
has root access, which versions of the protocols to be used and transport layers.

1.2. WHAT TO PUT IN EACH BLOCK 5

How to describe clients ?

Clients can be single machines, pack of machines, netgroups, and networks.

Single machine is identified by its name or ip address: e.g. localost or 127.0.0.1

Sets of machines: you may have ”farms” of machines with similar name like ”cluster0, cluster0,
..., cluster-gateway”. With a cluster, you can have bunches of such names. Using ”unix jokers”
can help so far. GANESHA allows you to specify names like ”cluster*” or ”cluster1?”, using the
old style ”shell joker syntax”
You can also specify ranges of machines using square brackets. For example, ”machine[1-3,7-9,12]-
eth1” will be interpreted as ”machine1-eth1, machine2-eth1, machine3-eth1, machine7-eth1, ...”

Networks: this should be a network name (you may have a /etc/networks describing them) or
a reduced ip address describing addresses belonging to this networks. For example 12.13.0.0 will
describe machines whose address is 12.13.x.y with netmask 0xffff0000

Netgroups: clients can be identified by the fact they belong to a given netgroup. This is shown
by adding an arobas at the beginning of the netgroupname. To tell GANESHA to provide access
to machine in netgroup ”nfsclients” specify ”@nfsclients”

Lists of clients is comma separated: ”localhost,12.13.0.0,@nfsclient”

Export parameters

NB: Only ’Path’ , ’Export Id’ and ’Pseudo’ are mandatory keys.

� Export Id : This tag is used to set the the id for this export. This is mostly used internally,
but this is a mandatory value. The value is to be a non-zero integer value
e.g: Export Id = 1 ;

� Access: The list if clients that can access the export entry
e.g: Access = ”Machine3,Machine10*,NetworkB,@netgroupY”;
NB: Using Access = ”*” ; will allow everybody to access the mount point.

� Root Access: The list of clients (see above) that have root access rights (root remains root
when crossing the mount point).
e.g: Root Access = ”localhost,12.13.0.0,@nfsclient” ;

� Access Type: Describes the kind of access you can have of the mount point. Acceptable
values are:

– RO: Read-Only mount point

– RW: Read-Write mount points

– MDONLY: The mount point is RW for metadata, but data accesses are forbidden (both
read and write). This means you can do everything on md, but nothing on data.

– MDONLY RO: Like RO, but reading data is forbidden. You can read only metadata.

e.g: Access Type = ”RW” ;

� Anonymous root uid : The uid to be used for root when no root access was specified for this
clients. This is the definition of the ’nobody’ user. ”Traditional” value is -2
e.g: Anonymous root uid = -2 ;

6 CHAPTER 1. HOW TO WRITE THE GANESHA’S CONFIGURATION FILE

� NOSUID: a flag (with value TRUE or FALSE) showing if setuid bit is kept.
e.g : NOSUID= TRUE;

� NOSGID: a flag (with value TRUE or FALSE) showing if setgid bit is kept.
e.g : NOSGID= TRUE;

� NFS Protocols: The version(s) of the NFS protocol you can use for mounting this export
entry
e.g: NFS Protocols = ”2,3,4” ;

� Transport Protocols: The transport layer to use for mount this entry This should be UDP
or TCP or a list.
e.g : Transport Protocols = ”UDP,TCP” ;

� Sec type: List of supported RPC SEC GSS authentication flavors for this export. It can be
a coma-separated list of the following values: sys, krb5i, krb5p.
e.g : SecType = ”sys,krb5”;

� MaxOffsetRead: Maximum offset allowed for a read operation (no limit if not specified).
This could be useful for prevently from ”evil” use of NFS read (like access a TB long file via
NFS)
e.g : MaxRead = 409600;

� MaxOffsetWrite: Like MaxOffsetRead, but for Write operation
e.g : MaxWrite = 409600;

� MaxRead, MaxWrite, PrefRead, PrefWrite, PrefReaddir: The value to be returned to client
when NFS3 FSINFO is called. Better solution is not to use this keys and so keep the default
values, optimized for NFSv3.

� Filesystem id: The filesystem id to provide to the client for this export entry. NFS Client
will use this value to address their internal metadata cache. In NFSv4, both major and
minor values are used, in NFSv2 and NFSv3, only the major is used.
e.g. : Filesystem id = 100.1 ;

� PrivilegedPort: A flag (TRUE or FALSE) to specify is a client using an ephemere port
should be rejecting or not.
e.g. PrivilegedPort = FALSE ;

� Cache Data: A flag (TRUE or FALSE) To specify if files content should be cached by the
GANESHA server or not
e.g : Cache Data = TRUE ;

� MaxCacheSize: if export entry is datacached, this value defines the maximum size of the
files stored in this cache.

� FS Specific: a comman separated list of information used by the FSAL to perform initial-
ization. See FSAL documentation for detail.
e.g. (for HPSS/FSAL): FS Specific = ”cos=1” ;

� Path: The path to export via NFS. Should have a leading slash.
e.g: Path = ”/nfs/my exported directory” ;

� Tag: A way of providing a shorter path for mounting an entry. For example, you could
mount an entry like this:

mount -o vers=3 nfsserver:/nfs/my_exported_directory /mnt

But if you specified ”Tag = ganesha;”, you can simply do

1.2. WHAT TO PUT IN EACH BLOCK 7

mount -o vers=3 nfsserver:ganesha /mnt

� Pseudo: a NFSv4 specific key that shows the path, in NFSv4 pseudo file system were the
’actual’ mount point resides.
e.g : Pseudo = ”/nfsv4/pseudofs/nfs mount entry #1” ;

1.2.2 The FSAL Block

This block provides with general information about the FSAL. A given FSAL could use other
information, more specific, but not from this block which remains generic.

� DebugLevel: the level of verbosity for FSAL logs. Acceptable values are:

– NIV NULL (no logging)

– NIV MAJ (log only major events)

– NIV CRIT (log only erroneous events)

– NIV EVENT (log only important events)

– NIV DEBUG (log all events)

– NIV FULL DEBUG (log all internal processing)

e.g: DebugLevel = ”NIV EVENT” ;

� LogFile: The path to use for the logfile.
e.g: LogFile = ”/var/log/ganesha.fsal.log” ;

� max FS calls: FSAL provides a way (with a semaphore) to limit the number of requests
performed by the worker threads. This is useful to prevent from ’FS flood via NFS’. If none
is specify, no limits exists and the semaphore will remain usused.
e.g : max FS calls = 20 ;

1.2.3 The FileSystem Block

This block describes the beahavior of the file system on some points.

� MaxRead: Maximum read buffer size for this filesystem.
e.g. : MaxRead = 1048576 ;

� MaxWrite: Maximum write buffer size for this filesystem
e.g. : MaxWrite = 1048576 ;

� Umask: If set, this mask is applied on the mode of created objects. This should be an octal
value, do not forget the leading 0.
e.g.: Umask = 0002 ;

� CanSetTime, Symlink support, Link support: Three flags (TRUE or FALSE) to specify if
hard links, symbolic links are allowed or if time is settable.

� auth xdev export: A flag (TRUE of FALSE) to specify if crossing junction is allowed or not.

8 CHAPTER 1. HOW TO WRITE THE GANESHA’S CONFIGURATION FILE

1.2.4 The HPSS Block (Only for use with HPSS/FSAL)

This is the items needed for configuring the HPSS CLAPI that the HPSS/FSAL uses for its calls.

� AuthMech: CLAPI Authentication mechanism. Should be ”krb5” or ”unix”
e.g. : AuthMech = ”krb5” ;

� PrincipalName: The Auth principal to be used by the HPSS/FSAL to run CLAPI calls.
Principal hpssfs is strongly suggested.
e.g. : PrincipalName = ”hpssfs”;

� KeytabPath: The Keytab file to be use for acquiring principal identify
e.g. : KeytabPath = ”/var/hpss/etc/hpss.keytabs” ;

� CredentialLifetime : The duration in seconds after which a CLAPI credential is to be re-
newed.
e.g. : CredentialLifetime = 3600 ;

� NumRetries: Number of retries in CLAPI for connection failure with HPSS. A value of 0
means no retry, a value of -1 means ”retry forever”. This last value may cause troubles
because worker threads may hang. A value of 100 is a good compromise.
e.g : NumRetries = 100 ;

� BusyDelay: retry delay (in seconds) if core server is busy
e.g.: BusyDelay = 1 ;

� BusyRetries: Number of retries when core is busy (0: no retry, -1: retry forever)
e.g. : BusyRetries = -1;

� MaxConnections : Maximum number of connection to the Core Server (check HPSS config-
uration for a coherent value)
e.g. : MaxConnections = 100;

1.2.5 The POSIX Block (only for use with a posix filesystem)

This block is related to POSIX/FSAL, it contains the necessary items to properly init the FSAL
built on top of POSIX calls.

� DB Host : The hostname for the machine running the DB engine
e.g. : DB Host = ”dbserver.localdomain” ;

� DB Port : The port to use for contacting the DB engine
e.g. : DB Port = 5432;

� DB Name : The name for the database to use for the POSIX/FSAL
e.g. : DB Name = FSAL POSIX DB ;

� DB Login : The username to use to connect to the database
e.g.: DB Login = DB USER ;

� DB keytab : The keytab to use to acquire the ’DB Login’ identity.
e.g : DB keytab = ”/var/etc/posix.db.keytab” ;

1.2. WHAT TO PUT IN EACH BLOCK 9

1.2.6 The SNMP Block (Only for use with SNMP/FSAL)

This block is related to SNMP/FSAL, it contains necessary items to properly init the FSAL built
on top of a SNMP tree.

� snmp version: this indicates the SNMP protocol version that GANESHA will use for com-
municating with SNMP agent. Expected values are 1, 2c or 3. Default is "2c".

� snmp server: this is the address of the SNMP master agent. A port number can also be
specified by adding “:¡port¿” after the address. Default is "localhost:161".

� community: this is the SNMP community used for authentication. Default is "public".

� nb retries: number of retries for SNMP requests. Default value is
SNMP DEFAULT RETRIES, defined in net-snmp library.

� microsec timeout: number of microseconds until first timeout, then an exponential backoff
algorithm is used for next timeouts. Default value is SNMP DEFAULT TIMEOUT, defined in
net-snmp library.

� client name: this is the client name that could be used internally by net-snmp for its traces.
Default value is "GANESHA".

� snmp getbulk count: this indicates the number of responses wanted for each SNMP GET-
BULK request. Default value is 64.

1.2.7 The BUDDY MALLOC Block

GANESHA manages its own memory on its own way. This is pretty useful for memory use
optimization. The algorithm is the Budd Block algorithm. Each thread in GANESHA manages
the memory it uses via this method.

� Page Size: The size of a page. This MUST be a power of 2.
e.g. : Page Size = 8388608;

� Enable OnDemand Alloc: a flag (TRUE or FALSE) to specify if a thread can extend its
number of page when it lacks memory. Value of TRUE is strongly recommended.
e.g. : Enable OnDemand Alloc = TRUE ;

� Enable Extra Alloc : a flag (TRUE or FALSE) to specify if buddy memory manager allow
threads to alloc memory areas that are larger than Page sSize value.
e.g. : Enable Extra Alloc = TRUE;

� Enable GC : a flag (TRUE or FALSE) to specify if buddy memory manager can release un-
used pages, according to GC Keep Factor and GC Keep Min parameters. TRUE is strongly
recommended.
e.g. : Enable GC = TRUE;

� GC Keep Factor : Buddy’s GC must keep at least GC Keep Factor times the current number
of used pages.
e.g. : GC Keep Factor = 2;

� GC Keep Min: GC must keep at least this number of pages.
e.g. : GC Keep Min = 2;

� LogFile: The path of the log file for BUDDY MALLOC messages (not very verbose, shows
only critical behaviours).
e.g. : LogFile: /var/log/ganesha.buddy malloc.log ;

10 CHAPTER 1. HOW TO WRITE THE GANESHA’S CONFIGURATION FILE

1.2.8 The ’CacheInode Hash’ block

This block defines the behavior of hash table used for the internal metadata cache.
It consists of the following key/value peers:

� Index Size: The size of the hash table. This MUST be a prime number, greater enough
compared to the number of worker threads (specified in the ’NFS Core Param’ block)

� Alphabet Length: A parameter for the hashing algorithm. This must be set to the number
of possible values for each byte of the underlying filesystem’s handle, i.e. 256. However, if
you notice a bad balancing in your hash tables, you can try decreasing this value (but it
should not exceed 256).

� Prealloc Node Pool Size: For better performances, each slot of the hash table consists of a
Red-Black Tree. Thus, this parameter is the number of preallocated RBT entries for each
worker thread. As a result, this must be set to a value that is close to the forecasted number
of metadata entries, divided by the number of worker threads.
e.g.: for 300k entries, and 30 worker threads, we’ll have about 10k entries by thread. Thus,
a value between 2500 and 10000 should be set (it will result in 1 to 4 memory allocations
during the whole life of the thread)

1.2.9 The ’CacheInode Client’ block

This block defines the behavior of the metadata cache. It consists of the following key/value peers:

� LogFile: The file where the metadata cache events are logged.

� DebugLevel: The verbosity level for the metadata cache log. The values can be:

– NIV NULL (no logging)

– NIV MAJ (log only major events)

– NIV CRIT (log only erroneous events)

– NIV EVENT (log only important events)

– NIV DEBUG (log all events)

– NIV FULL DEBUG (log all internal processing)

� LRU Nb Call Gc invalid: Each worker maintains a LRU list of the last entries it handled.
When a worker handles an entry, it sets it invalid in other threads’ LRU’s, in order to make
them garbaging it. This parameter so defines the periodicity for garbaging invalid entries
in this list. Thus, a worker will garbage its own list after processing this amount of NFS
requests.

� LRU Prealloc PoolSize: This parameter sets the number of LRU entries that are preallocated
for each worker thread. Given that the total amount of theses entries equals the number of
cache entries + a certain working set (number of working threads * LRU Nb Call Gc invalid),
this parameter must be close to the forecasted number of metadata entries divided by the
number of worker threads, + the value of LRU Nb Call Gc invalid.

� Entry Prealloc PoolSize: This parameter is the number of preallocated cache entries for each
worker thread. It must be close to the forecasted number of metadata entries divided by the
number of worker threads.

� DirData Prealloc PoolSize: This parameter is the number of preallocated directory cache
entries for each worker thread. It must be close to the number of directories in the exported
filesystem divided by the number of worker threads.

1.2. WHAT TO PUT IN EACH BLOCK 11

� ParentData Prealloc PoolSize: This parameter is the number (for each thread) of preallo-
cated entries’ references to their parents (for example, a hard linked object can have several
parents).
It must be close to the forecasted number of metadata entries divided by the number of
worker threads, except if the filesystem contains a huge amount of hard links (you should
then multiply this value by the average number of hard links on each object).

� State v4 Prealloc PoolSize: This parameter is the number (for each thread) of preallocated
state to be used by each worker for NFSv4 State management.
It is used only if NFSv4 is used.

� Attr Expiration Time: The expiration delay (in seconds) for cached attributes. A value of
”0” disables attributes cache expiration.

� Symlink Expiration Time: The expiration delay (in seconds) for symbolic link content. A
value of ”0” disables symlink cache expiration.

� Directory Expiration Time: The expiration delay (in seconds) for directory content. A value
of ”0” disables directory cache expiration.

� Use Getattr Directory Invalidation: This boolean indicates if a cached directory content is
invalidated when its mtime has changed on the underlying filesystem. Setting this parameter
to TRUE will result in an extra ”getattr” operation on the filesystem for each NFS ”readdir”
call, so it could strongly impact the readdir performances.
However, it must be set if your filesystem tree is continuously modified by an external actor
(another NFS server, ...) and if you need a good re-synchronisation of GANESHA’s NFS
server cache.

� Use Test Access: If set to TRUE (strongly recommended), NFS ”access” calls will be per-
formed according to the cached attributes (mode, group, owner,...).
Else, each NFS ”access” operation will result in an ”access” call to the underlying filesystem.

� Use OpenClose cache: If this boolean is set to TRUE, files will not be opened and closed at
each read/write NFS call: GANESHA will cache a certain amount of opened file descriptors
for better I/O performances (recommended).

� Max Fd: When datacaching is disabled and ’Use OpenClose cache’ is enabled, this param-
eter indicates the maximum number of files that can be kept openned for each thread.
NB: when datacaching is enabled, use the FileContent Client::Max fd parameter instead

� OpenFile Retention: When datacaching is disabled and ’Use OpenClose cache’ is enabled,
this parameter indicates the minimum time (in seconds) a file must be kept opened.
If the ’max fd’ limit is reached and all files have been opened more recently than the ’Open-
File Retention’ time, no more file descriptors are cached until the previous ones are older
than this value.

� Async Op Prealloc Poolsize (write back cache only): The number of structure representing
an asynchronous operation to be preallocated.

� Nb Synclet (write back cache only): The number of synclet to be started.

1.2.10 The ’CacheInode GC Policy’ block

This section defines the garbage collection policy for the metadata cache.
In GANESHA, each worker thread ensures the garbage collection of the cache entries it was

the last to deal with.
The following parameters describe the conditions that must be meet for a worker, in order for

it to launch a garbage collection of its entries.

12 CHAPTER 1. HOW TO WRITE THE GANESHA’S CONFIGURATION FILE

� Nb Call Before GC: This parameter indicates, for each worker thread, the number of NFS
calls it has to process between checking for garbage collection conditions.

� Runtime Interval: The period (in seconds) for checking cache high-watermark. Thus, a
worker thread does not check GC conditions until the interval since the last garbage collection
has not been enlapsed.

� NbEntries HighWater: Garbage collections are launched only if the number of entries in the
cache is over this value.

� NbEntries LowWater: A garbage collection stops when the number of entries in the metadata
cache falls to this value.

� File Lifetime: the minimum delay (in seconds) a file has not been accessed, for beeing a
candidate to metadata cache garbage collection.
A value of ”-1” disables files garbage collection.

� Directory Lifetime: the minimum delay (in seconds) a directory has not been accessed,
for beeing a candidate to metadata cache garbage collection. Note that a directory is not
garbaged until all its childs have not been garbaged before.
A value of ”-1” disables directory garbage collection.

1.2.11 The ’FileContent Client’ config block

This block sets the behavior for the datacache. It consists of the following key/value peers:

� LogFile: The file where the datacache events are logged.

� DebugLevel: The verbosity level for the datacache log. The values can be:

– NIV NULL (no logging)

– NIV MAJ (log only major events)

– NIV CRIT (log only erroneous events)

– NIV EVENT (log only important events)

– NIV DEBUG (log all events)

– NIV FULL DEBUG (log all internal processing)

� LRU Nb Call Gc invalid: Each worker maintains a LRU list of the last entries it handled
for read/write operations through the datacache. When a worker accesses an entry, it sets
it invalid in other threads’ LRU’s, in order to make them garbaging it. This parameter so
defines the periodicity for garbaging invalid entries in this list. Thus, a worker will garbage
its own list after processing this amount of read/write operations in the cache.

� LRU Prealloc PoolSize: This parameter sets the number of LRU entries that are preal-
located for each worker thread. Given that the total amount of theses entries equals
the number of datacached entries + a certain working set (number of working threads *
LRU Nb Call Gc invalid), this parameter must be close to the number of datacached files
divided by the number of worker threads, + the value of LRU Nb Call Gc invalid.

� Entry Prealloc PoolSize: This parameter is the number of preallocated datacache entries
for each worker thread. It must be close to the forecasted number of entries that are to be
datacached, divided by the number of worker threads.

� Cache Directory: The local directory where the GANESHA’s datacache is to be stored.

� Refresh FSAL Force: Force to refresh a datacached file when it has been manually modified
in the cache ???

1.2. WHAT TO PUT IN EACH BLOCK 13

� Use OpenClose cache: If this boolean is set to TRUE, cached files will not be opened and
closed at each read/write NFS call: GANESHA will cache a certain amount of opened file
descriptors for better I/O performances (recommended).

� Max Fd: When datacaching and ’Use OpenClose cache’ are enabled, this parameter indi-
cates the maximum number of files that can be kept openned for each thread.
NB: when datacaching is disabled, use the CacheContent Client::Max fd parameter instead

� OpenFile Retention: When datacaching and ’Use OpenClose cache’ are enabled, this pa-
rameter indicates the minimum time (in seconds) a file must be kept opened.
If the ’max fd’ limit is reached and all files have been opened more recently than the ’Open-
File Retention’ time, no more file descriptors are cached until the previous ones are older
than this value.

1.2.12 The ’FileContent GC Policy’ block

This section defines the garbage collection policy for the data cache.

� Emergency Grace Delay: When doing a global datacache flush (option -F of the ganesha),
files who are younger than this delay will neither be flushed nor removed from the cache.

� Lifetime: the minimum delay (in seconds) a file has not been accessed, for beeing a candidate
to flush and removal from the datacache.
A value of ”-1” disables data flushing.

� (not implemented yet) Inactivity Before Flush: Will be used for automatic flushing (without
removal).

� Df HighWater: When the local datacache filesystem usage is over this value (in percent), a
garbage collection of the datacache is launched.

� Df LowWater: A datacache garbage collection stops when the filesystem usage falls to this
value (in percent).

� Runtime Interval: The interval between checking datacache filesystem usage.

� Nb Call Before GC: This parameter indicates, for each worker thread, the number of read/write
calls through the datacache it has to process between checking for filesystem usage.

1.2.13 The ’NFS Worker Param’ block

This section consists of the parameters for worker threads.

� Pending Job Prealloc: Each worker has a queue of pending jobs (requests that have been
received from NFS clients, and that have to be processed yet).
This parameter indicates the number of preallocated pending jobs for each worker thread.
This must be close to the ’Nb Before GC’ parameter + the potential size of requests floods.

� LRU Pending Job Prealloc PoolSize: The pending jobs are sorted into a LRU list. Thus,
this parameter should be equal to the ’Pending Job Prealloc’ parameter.

� Nb Before GC: When a worker is processing a flood of requests, it does not clean its pending
jobs immediatly. The ’Nb Before GC’ parameter indicates how many requests a worker must
process before cleaning its queue.

� Nb DupReq Prealloc: This indicates the number of preallocated entries (for each worker) for
the duplicate request cache. This must be close to the total number of requests stored in it,
divided by the number of workers. This greatly depends on the number of NFS requests/sec
and the lifetime of this cache (see the NFS Core Param::DupReq Expiration parameter)

14 CHAPTER 1. HOW TO WRITE THE GANESHA’S CONFIGURATION FILE

� LRU DupReq Prealloc PoolSize: The pending requests are sorted into a LRU list. Thus,
this parameter should be equal to the ’Nb DupReq Prealloc’ parameter.

� Nb DupReq Before GC: The ’Nb DupReq Before GC’ parameter indicates how many re-
quests a worker must process before garbaging the duplicate request cache.

� Nb IP Stats Prealloc: The number of preallocated entries for the IP to statistics cache. This
must be close to the number of client nodes.

� Nb Client Id Prealloc: The number of preallocated entries for client information cache in
NFSv4. This must be close to the number of client nodes.

1.2.14 The ’NFS Core Param’ block

This section gives general parameters for the NFS deamon.

� Nb Worker: The number of worker threads (threads that process NFS requests)

� NFS Port: The port number for incoming NFS requests (default is 2049)

� MNT Port: The port number for mount protocol (default is any available port)

� NFS Program: The RPC program number for NFS (default is 100003)

� MNT Program: The RPC program number for mount protocol (default is 100005)

� Drop IO Errors: This parameter defines the behavior of the server when an EIO error is
returned by the filesystem.
TRUE indicates that the client request will be dropped, so the client will retry it later.
FALSE indicates that an IO error is return to the client (and as a result, to the client
application).

� Drop Inval Errors: This parameter defines the behavior of the server when an EINVAL error
is returned by the filesystem.
TRUE indicates that the client request will be dropped, so the client will retry it later.
FALSE indicates that an IO error is return to the client (and as a result, to the client
application).

� DupReq Expiration: This defines the lifetime for the duplicate NFS requests cache.

� Core Dump Size: This indicates the core size in case of a server crash (default is 0)

� Stats File Path: This indicates the file for dumping server’s statistics.

� Stats Update Delay: This indicates the delay for dumping server’s statistics.

� Dump Stats Per Client: Should be set to TRUE or FALSE. If set TRUE, the statistics per
client will be dumped . (default is FALSE)

� Stats Per Client Directory: If Dump Stats Per Client is TRUE, this directory will contain
one file per client. (default is /tmp)

1.2.15 The ’NFS DupReq Hash’ block

Duplicate requests are found from their ’rpcxid’ using a hash table. This section specifies the
parameters for this hastable:

� Index Size: The size of the hash table. This MUST be a prime number, greater enough
compared to the number of worker threads (specified in the ’NFS Core Param’ block)

1.2. WHAT TO PUT IN EACH BLOCK 15

� Alphabet Length: A parameter for the hashing algorithm. This must be set to the number
of possible values for each byte of the rpcxid, i.e. 256.
However, if you notice a bad balancing in your hash table, you can try decreasing this value
(but it should not exceed 256).

� Prealloc Node Pool Size: For better performances, each slot of the hash table consists of a
Red-Black Tree. Thus, this parameter is the number of preallocated RBT entries for each
worker thread. As a result, this must be set to a value that is close to the forecasted number
of duplicate requests cache entries, divided by the number of worker threads. Thus, it must
be equal to ’NFS Worker Param::Nb DupReq Prealloc’.

1.2.16 The ’NFS IP Name’ block

Hostnames are found from the associed IP address using a hash table. This section specifies the
parameters for this hastable:

� Index Size: The size of the hash table. This MUST be a prime number, greater enough
compared to the number of worker threads (specified in the ’NFS Core Param’ block)

� Alphabet Length: A parameter for the hashing algorithm. This must be set to the number
of possible values for each byte of the ip address, i.e. 256.
However, if you notice a bad balancing in your hash table, you can try decreasing this value
(but it should not exceed 256).

� Prealloc Node Pool Size: For better performances, each slot of the hash table consists of a
Red-Black Tree. Thus, this parameter is the number of preallocated RBT entries for each
worker thread. As a result, this must be set to a value that is close to the number of client
hosts, divided by the number of worker threads.

� Map: The hash table content can be preloaded when the NFS server is starting so that it
won’t have to issue any DNS requests at runtime. This parameter specifies the file that
contains the DNS items to be preloaded.

1.2.17 The ’UidMapper Cache’ block

User names are used for the NFSv4 protocol. They are found from the associated uid using a hash
table. This section specifies the parameters for this hastable:

� Index Size: The size of the hash table. This MUST be a prime number, greater enough
compared to the number of worker threads (specified in the ’NFS Core Param’ block)

� Alphabet Length: A parameter for the hashing algorithm. This must be set to the number
of possible values for each byte of the uid, i.e. 256.
However, if you notice a bad balancing in your hash table, you can try decreasing this value
(but it should not exceed 256).

� Prealloc Node Pool Size: For better performances, each slot of the hash table consists of a
Red-Black Tree. Thus, this parameter is the number of preallocated RBT entries for each
worker thread. As a result, this must be set to a value that is close to the total number of
users, divided by the number of worker threads.

� Map: The hash table content can be preloaded when the NFS server is starting so that it
won’t have to issue any ldap/nis request about users at runtime. This parameter specifies
the file that contains the passwd items to be preloaded.

16 CHAPTER 1. HOW TO WRITE THE GANESHA’S CONFIGURATION FILE

1.2.18 The ’GidMapper Cache’ block

Group names are used for the NFSv4 protocol. They are found from the associated gid using a
hash table. This section specifies the parameters for this hastable:

� Index Size: The size of the hash table. This MUST be a prime number, greater enough
compared to the number of worker threads (specified in the ’NFS Core Param’ block)

� Alphabet Length: A parameter for the hashing algorithm. This must be set to the number
of possible values for each byte of the gid, i.e. 256.
However, if you notice a bad balancing in your hash table, you can try decreasing this value
(but it should not exceed 256).

� Prealloc Node Pool Size: For better performances, each slot of the hash table consists of a
Red-Black Tree. Thus, this parameter is the number of preallocated RBT entries for each
worker thread. As a result, this must be set to a value that is close to the total number of
groups, divided by the number of worker threads.

� Map: The hash table content can be preloaded when the NFS server is starting so that it
won’t have to issue any ldap/nis request about groups at runtime. This parameter specifies
the file that contains the group items to be preloaded.

1.2.19 The ’NFSv4 ClientId Cache’ block

Client ids are used in NFSv4 protocol, in order to keep informations about clients. Those infor-
mations are stored into a hashtable. This section specifies the parameters for this hastable:

� Index Size: The size of the hash table. This MUST be a prime number, greater enough
compared to the number of worker threads (specified in the ’NFS Core Param’ block)

� Alphabet Length: A parameter for the hashing algorithm. This must be set to the number
of possible values for each byte of the client id, i.e. 256.
However, if you notice a bad balancing in your hash table, you can try decreasing this value
(but it should not exceed 256).

� Prealloc Node Pool Size: For better performances, each slot of the hash table consists of a
Red-Black Tree. Thus, this parameter is the number of preallocated RBT entries for each
worker thread. As a result, this must be set to a value that is close to the number of client
hosts, divided by the number of worker threads.

1.2.20 The ’NFSv4 StateId Cache’ block

State ids are used in NFSv4 protocol, in order to keep informations about clients. Those informa-
tions are stored into a hashtable. This section specifies the parameters for this hastable:

� Index Size: The size of the hash table. This MUST be a prime number, greater enough
compared to the number of worker threads (specified in the ’NFS Core Param’ block)

� Alphabet Length: A parameter for the hashing algorithm. This must be set to the number
of possible values for each byte of the client id, i.e. 256.
However, if you notice a bad balancing in your hash table, you can try decreasing this value
(but it should not exceed 256).

� Prealloc Node Pool Size: For better performances, each slot of the hash table consists of a
Red-Black Tree. Thus, this parameter is the number of preallocated RBT entries for each
worker thread. As a result, this must be set to a value that is close to the number of client
hosts, divided by the number of worker threads.

1.2. WHAT TO PUT IN EACH BLOCK 17

1.2.21 The ’NFS KRB5’ block

This section specifies the parameters for RPCSEC GSS authentication.

� PrincipalName: The principal name the NFS server (default is nfs@localhost.localdomain)

� KeytabPath: The Kerberos5 keytab for this principal

1.2.22 The ’NFSv4’ block

This block is for NFSv4 specific parameters.

� Lease Lifetime: This specifies the NFSv4 lease time (see RFC 3530 for more details)

� FH expire: This specifies if NFSv4 FH will expire (see RFC 3530 for more details)

� Returns ERR FH EXPIRED: Specifies if the serveur should return NFS4ERR FHEXPIRED.
This will be used only if FH expire is TRUE.

� Use OPEN CONFIRM: This specifies if the server should request the client (via OP4 OPEN CONFIRM)
to confirm for the files it opens. Default Value is FALSE

