Exporting a SNMP tree with GANESHA

1 Overview

Thanks to its backend modules called “File System Abstraction Layers” (FSAL),
GANESHA NFS server makes it possible to export any sets of data organized
as trees, where each entry has a name and path.

In SNMP (Simple Network Management Protocol), data are organized as a
tree where all objects are addressed by their OID, which is the object’s path
in this tree. For example, “.iso” can be considered has a directory identified by
the OID “.1”, and the leaf “.iso.org.dod.internet.mgmt.mib-2.system.sysDescr.0”
(which corresponds to system description) can be considered as a file whose
data is something like “Linux node name 2.6.9-22.ELsmp #1 SMP Mon Sep 19
18:32:14 EDT 2005 i686”.

As a result, exporting such a tree through NFS makes it possible to have a
filesystem similar to “/proc”, where administrators can read statistics about a
system or an equipment (switch, router, ...) simply using cat command, and
modify them easily, using vi or echo "xxx" > file.

This is what you can do using the SNMP FSAL. To use it, simply build
GANESHA using the configure arg -with-fsal=SNMP:

cd src
./configure --with-fsal=SNMP
make

Net-snmp library and includes must be installed on your system.

2 SNMP relative options
2.1 The SNMP block

2.1.1 Parameters description

For configurating GANESHA’s SNMP access, you have to set some options in
the configuration file: this in done in a “SNMP” configuration block.

In such a block, you can set the following values:

e snmp_version: this indicates the SNMP protocol version that GANESHA
will use for communicating with SNMP agent. Expected values are 1, 2¢
or 3. Default is "2c".

e snmp_server: this is the address of the SNMP master agent. A port num-
ber can also be specified by adding “:<port>" after the address. Default
is "localhost:161".

S

S

nb_retries: number of retries for SNMP requests. Default value is
SNMP_DEFAULT_RETRIES, defined in net-snmp library.

microsec_ timeout: number of microseconds until first timeout, then an
exponential backoff algorithm is used for next timeouts. Default value is
SNMP_DEFAULT_TIMEOUT, defined in net-snmp library.

client name: this is the client name that could be used internally by
net-snmp for its traces. Default value is "GANESHA".

snmp getbulk count: this indicates the number of responses wanted for
each SNMP GETBULK request. Default value is 64.

NMP vl and v2 specific parameters:

community: this is the SNMP community used for authentication. Default
is "public".

NMP v3 specific parameters:
auth_proto: the authentication protocol (MD5 or SHA). Default is "MD5".
enc_ proto: the privacy protocol (DES or AES). Default is "DES".

username: the security name (or user name). This a private information:
check rights on this config file!

auth phrase: authentifaction passphrase (>=8 char). This a private in-
formation: check rights on this config file!

enc_phrase: authentifaction passphrase (>=8 char). This a private infor-
mation: check rights on this config file!

2.1.2 A simple SNMP v2c example

SNMP
{

snmp_version = 2c;
snmp_server = "snmp_master.my_net";
community = "public";

2.1.3 A simple SNMP v3 example

SNMP
{

snmp_version = 3;

snmp_server = "snmp_master.my_net";
username = "snmpadm";
auth_phrase = "p4sswOrd!";
enc_phrase = "p455wOrd?";

2.2 Export entries

For defining the path of an export entry, you must replace traditional SNMP
dot separators ‘.” by slashes ‘/’. For example, you should set export path to
¢/iso/org’ instead of ‘.iso.org’.

Note that you can give slash separated numerical OIDs for exports. Thus,
exporting ‘/1/3/6/1/2/1’ is equivalent to ¢/iso/org/dod /internet/mgmt/mib-2’.

3 Specific behaviors

Even if it is possible to export a SNMP tree as if it was a standard filesystem,
SNMP however has some specificities that don’t match POSIX or NFS semantics
and features.

3.1 Creating and removing objects

The goal of exporting SNMP with NFS is to make it possible for an administra-
tor to browse statistics, to read them, and modify some agent’s configuration
variables.

Thus, we don’t have any interest in creating new entries (register some new
values to SNMP agent) nor removing existing entries (unregister agent’s ob-
jects). That would be very complex to operate and it could result in agent’s
problems or crashes...

Another problem in SNMP is that object types are very different from NFS
types: an object can be an integer, a string, a counter, a timetick, so it is difficult
to know the type of data a NFS client is going to write to a newly created file...

What’s more, directories don’t have a proper existence; they only exist if a
child of them exist. As a result, creating or deleting an empty directory would
have no sense in SNMP.

For all those reasons, create and remove operations (create, mkdir, re-
move, rmdir) are not supported and return an EROFS error.

3.2 Objects’ attributes
3.2.1 Returned attributes

SNMP objects don’t have the same metadata as NFS. They have no modifi-
cation or access time, no owner, no inode number, etc... As a result, it has
been necessary to emulate some of these attributes, to make the SNMP FSAL
compatible with the NFS protocol.

e type: all SNMP objects are considered as regular files and their parent
nodes as directories.

e size: unlike ‘/proc’ file system (where are file sizes are shown as null), the
returned size for a SNMP object is the size of its current string represen-
tation.

e inode number: SNMP objects have no unic 32 or 64 bits identifier. How-
ever, their OID is unic and constant, like inode number might be. So, the
returned inode number is a hash of this OID.

e owner and group: there is no such attributes in SNMP. Thus, owners and
groups are set to 0 (root).

e mode: it is not always possible to determinate the access rights for an
SNMP object. Thus, the SNMP FSAL makes its best to determine ac-
cess rights from MIBs info, but sometimes it doesn’t know, so it returns a
default mode rw-rw-rw (0666) for files, and r-xr-xr-x (0555) for direc-
tories. As a result, you may get an EACCES error when writing or reading
a file, even if you seemed to have the correct rights.

e numlinks: there is no hardlinks in SNMP, so link count is always 1 for
regular files. What’s more, for a given directory, il would be costful to
count the number of child directories that would have a virtual ‘..” entry.
As a result, the numlink is also set to 1 for directories.

e access, modification and change time: SNMP has no memory of the time
when a variable has been created, read or modified. So, the SNMP FSAL
always return current time for those attributes. What’s more, given that
objects’ data can change continuously, this behavior forces clients to clear
their datacaches.

3.2.2 Setting attributes

Given that the only attributes that have an equivalence in SNMP are static
(read-only), no attributes are supported for setattr operations. Thus,
trying to change an attribute will result in a EINVAL error.

3.3 Objects’ data
3.3.1 String representation

SNMP objects divide in many types: integer, counter, gauge, string, opaque
buffer, OID, timeticks, network address, etc. In order to make it easy to in-
terpret, the data returned by a ‘read’ operation is a string representation that
depends on the object type.

Indeed, even if integer, timeticks or IPv4 address are both 32 bits values,
the integer will be displayed as a numerical value, timeticks will be displayed as
days/hours/minutes/seconds, and the network address will be displayed in the
classical dot-separated notation.

Some examples:

$ cd /mnt/iso/org/dod/internet/mgmt/mib-2

$ cat host/hrSystem/hrSystemUptime/0
528224338 (61 days, 03:17:23.38)

$ cat udp/udpInDatagrams/0
820798

$ cat udp/udpTable/udpEntry/udpLocalAddress/1/0/0/127/123
127.0.0.1

3.3.2 Modifying data

To modify a value, you just have to write a string repesentation to the associated
file, using the way you want: a program, a script, or just the echo command, ...
For example:

$ cd /mnt/iso/org/dod/internet/mgmt/mib-2
$ echo "my_new_hostname" > system/sysName/0Q

But be careful: in SNMP, there are strong type constraints: you cannot
write a string to an integer, etc. What’s more, for a given object, the agent
may also do extra checks (for example, if a configuration value is supposed to
be a percentage, its SNMP type is unsigned integer, but the agent may return
an error if you set a value greater than 100).

In general, you have to rewrite data in the format of the value read in the
file. The only exception is for timeticks: you must only write the value in 100th
of seconds (not its translation to days, hours, minutes, seconds).

An issue when developping the SNMP FSAL has been to translate “invalid
type” SNMP errors to an appropriate NFS error code. Indeed, in NFS, there
is no concept of invalid data content ! Returning NFSERR_INVAL or NF-
SERR_IO may result in a bad interpretation by the client, and it would be
difficult for the client to distinguish the error from a real EIO or EINVAL error.
So, it has been decided to convert such an error to NFSERR_DQUOT (that
has no other sense with SNMP) so the user can know, with no ambiguity, that
the value is not in the correct format, or is out of expected range.

3.3.3 Unsupported data operations

Read at offset>0 In the SNMP protocol, an object’s data is read in a single
GET request. As a result, a ‘read’ NFS operation must always read data from
offset 0, and with a buffer big enough for writting the whole variable content.
If the buffer is too small, the data representation will be truncated.

Thus, after a seek, a read operation may return an EINVAL error. The
same error is returned for pread operation with a non-null offset.

Write at offset>0 To write in a file, it is the same: in the SNMP protocol,
object’s data is written in a single SET request. As a result, the NFS ‘write’
operation must give all the object data, starting at offset 0.

Thus, after a seek operation, a write operation may return EINVAL. The
same error is returned for a pwrite operation with a non-null offset.

Truncate A truncate operation on an object that is not a string has no sense.
For example, what about truncating an integer? Indeed, its string representation
always contains at least 3 characters, e.g. for representing zero: "0\n\0".

However, we must not return an error for truncate operations, because when
user do something like ‘echo "0" > an_integer_object’, the first system op-
eration is:
open("an_integer_object", O_CREAT|O_TRUNC|O_WRONLY);
which will be translated to the NFS request SETATTR(size=0) (i.e. truncate).
As a result, if we returned an error for the truncate operation, the user could
not write data to files...

Thus, we decided to ignore ‘truncate’ operations, given that the object’s
data is totaly replaced at the following ‘write’.

The only border side effect is that ’cp /dev/null’ or ‘truncate’ on a file
has no effect (to truncate a string, you must write an empty string to it).

