SNORT® Users Manual
2.9.0

The Snort Project

March 25, 2011

Copyright(©1998-2003 Martin Roesch
Copyright(©2001-2003 Chris Green
Copyright(©2003-2011 Sourcefire, Inc.

Contents

[L__Snort Overview 9
L1 _Geffing Startd 9
L2 _snifferMaode e 9
L3 PacketloggerMaole 10
[1.4 Network Intrusion Detection System Mbde e 11

.41 NIDS Mode Output Optiohso v i o e 11
.42 Understanding Standard Alert OUEPUL o v vt v e e 12
.43 High Performance Configurafiono 12
44 ChangingAlertOrder 13
L5 PacketAcquisitidn 13
51 Configuratidn 13
B2 PCAP . . . o o 14
53 AFPACKET e 15
B4 NED . . oo, 15
BEE 1PD . . . o 16
56 1PEW o 16
LE5Z DUmb . . o . o oo 16
[L5.8 StafisticsChandes 17
6 Reading PCaADS« o o oot e e e e 17
.61 Commandlineargumdnts 17
62 Examplds 17
L7 BasicOutplit 19
71 Timing Statistibs 19
72 Packetl/OTotdls 19
[L7.3 Profocol SIAfistics oo e 20
.74 Actions, limits,and Verdidts 21
L8 Tunneling Protocol Suppbrt e 22
.81 Multiple Encapsulationsot e 22
82 100Qinl . « . o o oo e e 22
[L9 Miscellaneolls e 23

.92 Runningin Rule Stub Creation Mbdeccoooivvvnn ... 23
[.9.3 Obfuscating IP Address Prinfduts oot e 24
[1.9.4 Specifying Multiple-Instance Identifiers 24
95 SnomModeso i 24
[L10 More Informatian o e e e 25
[2__Configuring Snori 26
P includds 26
Pl Formdt 26
P12 Varablds 26
P13 Confl. . . . oo 29
.2 _PreproCessdrs oo e 38
P21 Fradd 38
P22 Streanls 41
23 sfPorfschn. e 46
24 RPCDecolle 51
.25 Performance Monifor e 52
P26 HITPInspekt. e 55
P27 SMTPPrepraceskor 67
2.8 FTP/Telnet Preprocedsor v oo v i 70
P29 SSH 76
B2I0DNB 78
P2I1SSITTIR . . . o oo 78
2.2.12 ARP Spoof PreproCedsor v v v v i e e e e e e e e 80
2213 DCE/RPC 2 Prepracedsoro v v v i i e e e e 81
.2.14 Sensitive Data Prepracebsor 94
2215 Normaliz@€r o 97
2.3 _Decoderand PreprocessorRUIES e e 100
P31 Configuridg 100
.32 _Revertingto originalbehavior 101
P4 EventProcessihg 101
P41 RateFilteridg 102
P42 FEventFilteridg e 103
.43 FventSuppresslon 105
P44 FEventloggidg 106
2.5 Performance Profilihg e 107
P51 RuleProfilidg e 107
2.5.2 PreprocessorProfillng e 109

P6 OutputModulds 114
P61 alertsyslof 151
P62 Alemast oo 611
P63 alertfull 11
P64 alertunixsock. 117
P65 logtcpdumb 171
P66 datababe 118
D67 Calv . . 119
P68 unifieh 120
P69 UnifiedD 121
2610 alerpreludb 211
D611 lognul 122
2612 alerfarubaactioh 122
613 loglimitb 123

B7 HostAttribute Table 123
P71 Configuration Formdat e 123
P72 Atribute Table File Formdat. 124
073 Attribute Table Example 126

2.8 DynamicModulds. 127
P8I _Formbt oo 127
.82 Directivds 127

.9 Reloadinga Snort Configurafion 128
.91 Fnablingsuppdrt 128
P92 Reloadingaconfiguratlon 128

- ' NS . e e e e 129

.10 Multiple Configuratiohs e 130
[2.10.1 Creating Multiple Configuratidns oo 130
2.10.2 Configuration Specific Elemdnts 131
.10.3 How Configurationisapplidd? 132

P11 Active Respanbe 132
2111 FnablingActive ResSpofiseottt 133
2112 Configure Snipihg e 133
PI13 Flextedp . . . o o o 133
DI Reabt 134
D115 RuleActiols 135

B _TREBASIES . - . o o o oo 136
B2 RulesHeaddrs 136
B21 RuleActiods 136
B22 Profocals oo 137
B23 IPAddressks 137
B24 PortNumbdrs 138
B25 TheDirectionOperalor 138
B2.6 Activate/DynamicRules 139
B3 RuULOPHONS vttt e 139
B4 GeneralRule OpLiGNS o ot e 140
Bal _mdy . . . 140
B42 teferende 140
BA3 gill . .. 141
Baa _sill. ... 141
BAS el 142
B46 _ClasstyDe oo 142
BAZ DHOMW . . o o oo e e e e 143
B48 metaddta 144
B.49 GeneralRule QuickReferehce 144
B.5 _Payload Detection Rule OPIibNS oottt e 145
BEI conteht 145
BE2 mnacabe. 146
BE3 1rawhvids 146
BEA4 _deplho 147
BEE _OSAt . . o . oo 147
BEGE _diSIAN®e . . . o oo 148
BEZ wWithih oo 148
B5.8 httpelienthady 149
B59 hitpcooki® 491
B510 hitpraw cooki® o o o 150
B511 httpheaddr 501
B512 htprawheaddr. 151
B5.13 httpmetholl 511
BEI4 nttpurd o 15
B515 httprawurd 152
B5.16 hifpstatcod® 152
BEA7 hHPSIAIMSY o e 153
B518 hitpencade 531

B520 uriconteht 155
BE21 urileh 156
BE22 GSOAIARL . . . o v o et e e 157
BE23 ncle . . o o 157
BE24 fledath o o oo 581
B525 base6dlecade 159
B526 base6flath 160
3 bytetedt e e e e 611
B528 hyteump 216
B529 byteextradt 163
B5.30 ftphounde e 164
BE31 asll 164
BE32 0B . . o 165
BEB3 ACAIACE oo oot 651
B534 dceopnurh 516
B535 deestubdath 165
B536 sshersioh 165
BE3Z SSSIAtE . . . o o o 165
[3.5.38 Payload Detection Quick Referdnce 165
3.6 Non-Payload Detection Rule Optibns 166
BB _fagoffsbt o o 166
BB2 1l ... 166
B3 105 167
BOA 0l . . .o 167
BBE IN0DES . . o o e 168
BB6 _TaghlSs . . . o o v oo 168
BOZ _dsideo 169
BBB HAGS . . o v o e 169
BE.O HOW . . . o oo 170
BEI0 AOWDIES o oo 170
BOI1 Sdq . . . oo 171
B6I2 adk 171
BEI3 WindOW . . .« o oo e e 171
BBIA YR . . . oo 172
B6I5icadeo 172
BEI6 Gompid oo 172
BBAZ icmpsell o 172
BEIB IOC . o o e 173

B620 Samelp . . . o oo 173
B.621 streameassemble 741
B.6.22 streamsizé 174
= NCE . . . i e e e e 174
- NS . e e e e e 175
BZ1 10gib . . .o o 175
BZ2 sessibn 175
BZ3 163D . . o e 176
BZa xeabt.o 176
BZE Al . . o o oo 176
BZ6 achVam®s o 177
BZ7 activatecbyl. 177
BZ8 COUBt . . o oo et 177
BZ9 replade 177
B.7.10 detectiofdilted, 177
- i NCE . . . o e e 178
B8 RuleThreshollls 178
B9 Wriing GOOd RUIBS o o ot e e e e 179
B91 ContentMatchig 179
3.9.2 Catch the Vulnerability, Notthe Exploit oo, 179
3.9.3 Catch the Oddities of the Protocolinthe Ruleo, 179
B94 OptimizingRulds 180
B95 TestingNumericalValdescuuerio...... 181
__Dynamic Module$ 184
M1 DataStructurbs 184
B11 DynamicPluginMefa oo 184
.12 DynamicPreprocessorbata oi i e 184
B13 DynamicEngineDataot 185
1.4 SESnortPacket 185
BI15 DynamiCRUIBS o o 185
B2 Required FUNCHONS ottt e 190
2.1 PreproCessbrS v v v o i e 191
22 DetectionEngihe 191
B23 RUES . . oot e 192
B3 Exampldso 192
31 PreprocessorExample 192
B32 RUES . . o oo 194

B.1 _SubmittingPatchles 197
B2 SnotData FlOW o oo e e e e 197
B.2.1 PreproCessbrsS oo v o e 197
B.22 DetectionPlugihs e 197
B.23 OutputPIUGINS o e 197
B3 TheSnortTedm 198

Chapter 1

Snort Overview

This manual is based aftriting Snort Ruleby Martin Roesch and further work from Chris Greeomg@snort.org .

It was then maintained by Brian Caswelbmc@snort.org and now is maintained by the Snort Team. If you have a
better way to say something or find that something in the decuation is outdated, drop us a line and we will update
it. If you would like to submit patches for this document, yzan find the latest version of the documentatiorTigX
format in the Snort CVS repository aoc/snort_manual.tex . Small documentation updates are the easiest way to
help out the Snort Project.

1.1 Getting Started

Snortreally isn’t very hard to use, but there are a lot of c@ndline options to play with, and it's not always obvious
which ones go together well. This file aims to make using Seaster for new users.

Before we proceed, there are a few basic concepts you shoditstand about Snort. Snort can be configured to run
in three modes:

e Sniffer modewhich simply reads the packets off of the network and displdaem for you in a continuous
stream on the console (screen).
e Packet Logger modevhich logs the packets to disk.

e Network Intrusion Detection System (NIDS) moithe most complex and configurable configuration, which
allows Snort to analyze network traffic for matches againstex-defined rule set and performs several actions
based upon what it sees.

1.2 Sniffer Mode

First, let’s start with the basics. If you just want to printtéhe TCP/IP packet headers to the screen (i.e. sniffer jnode
try this:

Jsnort -v

This command will run Snort and just show the IP and TCP/UDRWP headers, nothing else. If you want to see the
application data in transit, try the following:

Jsnort -vd

This instructs Snort to display the packet data as well ah#aelers. If you want an even more descriptive display,
showing the data link layer headers, do this:

Jsnort -vde

(As an aside, these switches may be divided up or smasheithésgre any combination. The last command could also
be typed out as:

Jsnort -d -v -e

and it would do the same thing.)

1.3 Packet Logger Mode

OK, all of these commands are pretty cool, but if you want word the packets to the disk, you need to specify a
logging directory and Snort will automatically know to gdadrpacket logger mode:

Jsnort -dev - .Jlog

Of course, this assumes you have a directory nalatedn the current directory. If you don’t, Snort will exit with
an error message. When Snort runs in this mode, it colleety/gacket it sees and places it in a directory hierarchy
based upon the IP address of one of the hosts in the datagram.

If you just specify a plain -I switch, you may notice that Snemmetimes uses the address of the remote computer
as the directory in which it places packets and sometimesei the local host address. In order to log relative to the
home network, you need to tell Snort which network is the hoetvork:

Jsnort -dev - Jlog -h 192.168.1.0/24

This rule tells Snort that you want to print out the data limda CP/IP headers as well as application data into the
directory./log , and you want to log the packets relative to the 192.1681a$sdC network. All incoming packets
will be recorded into subdirectories of the log directorythathe directory names being based on the address of the
remote (non-192.168.1) host.

ANOTE

Note that if both the source and destination hosts are ondheemetwork, they are logged to a directary
with a name based on the higher of the two port numbers orgicdlse of a tie, the source address.

If you're on a high speed network or you want to log the packats a more compact form for later analysis, you
should consider logging in binary mode. Binary mode loggahekets in tcpdump format to a single binary file in the
logging directory:

Jsnort - Jlog -b

Note the command line changes here. We don't need to spetirae network any longer because binary mode
logs everything into a single file, which eliminates the némdell it how to format the output directory structure.
Additionally, you don’t need to run in verbose mode or spettie -d or -e switches because in binary mode the entire
packet is logged, not just sections of it. All you really néedo to place Snortinto logger mode is to specify a logging
directory at the command line using the -I switch—the -b hifagging switch merely provides a modifier that tells
Snort to log the packets in something other than the defatitud format of plain ASCII text.

Once the packets have been logged to the binary file, you eairtihe packets back out of the file with any sniffer that
supports the tcpdump binary format (such as tcpdump or E#tterSnort can also read the packets back by using the
-r switch, which puts it into playback mode. Packets from topgdump formatted file can be processed through Snort
in any of its run modes. For example, if you wanted to run afyiteg file through Snort in sniffer mode to dump the
packets to the screen, you can try something like this:

10

Jsnort -dv -r packet.log

You can manipulate the data in the file in a number of ways tindBnort’s packet logging and intrusion detection
modes, as well as with the BPF interface that's availablsftioe command line. For example, if you only wanted to
see the ICMP packets from the log file, simply specify a BPEffidtt the command line and Snort will only see the
ICMP packets in the file:

Jsnort -dvr packet.log icmp

For more info on how to use the BPF interface, read the Sndrtggdump man pages.

1.4 Network Intrusion Detection System Mode

To enable Network Intrusion Detection System (NIDS) modéhst you don'’t record every single packet sent down
the wire, try this:

Jsnort -dev -l Jlog -h 192.168.1.0/24 -c snort.conf

wheresnort.conf is the name of your snort configuration file. This will applg tlules configured in thanort.conf
file to each packet to decide if an action based upon the rpkeitythe file should be taken. If you don’t specify an
output directory for the program, it will default tear/log/snort

One thing to note about the last command line is that if Soging to be used in a long term way as an IDS, the
-v switch should be left off the command line for the sake afexsh The screen is a slow place to write data to, and
packets can be dropped while writing to the display.

It's also not necessary to record the data link headers fat aqplications, so you can usually omit the -e switch, too.
Jsnort -d -h 192.168.1.0/24 -l .llog -c snort.conf

This will configure Snort to run in its most basic NIDS formglging packets that trigger rules specified in the
snort.conf in plain ASCII to disk using a hierarchical directory strui (just like packet logger mode).

1.4.1 NIDS Mode Output Options

There are a number of ways to configure the output of Snort DS\thode. The default logging and alerting mecha-
nisms are to log in decoded ASCII format and use full alertge full alert mechanism prints out the alert message in
addition to the full packet headers. There are several atleer output modes available at the command line, as well
as two logging facilities.

Alert modes are somewhat more complex. There are sevennateles available at the command line: full, fast,
socket, syslog, console, cmg, and none. Six of these modescaessed with the -A command line switch. These
options are:

Option Description

-A fast Fast alert mode. Writes the alert in a simple format with a&e8tamp, alert message, source and
destination IPs/ports.

-A full Full alert mode. This is the default alert mode and will bedsaetomatically if you do not specify
a mode.

-A unsock Sends alerts to a UNIX socket that another program can leten

-A none Turns off alerting.

-A console Sends “fast-style” alerts to the console (screen).

-A cmg Generates “cmg style” alerts.

11

Packets can be logged to their default decoded ASCII formtd a binary log file via the -b command line switch.
To disable packet logging altogether, use the -N commarmdcshivitch.

For output modes available through the configuration file,3ectiol 216.

ANOTE

Command line logging options override any output optiorecgjed in the configuration file. This allows
debugging of configuration issues quickly via the commamel. li

To send alerts to syslog, use the -s switch. The defaulitiasifor the syslog alerting mechanism are LAGTHPRIV
and LOGALERT. If you want to configure other facilities for syslog tput, use the output plugin directives in
snort.conf. See Secti@n 2.6.1 for more details on configwsyrslog output.

For example, use the following command line to log to def@ddcoded ASCII) facility and send alerts to syslog:
Jsnort -¢ snort.conf -I Jlog -h 192.168.1.0/24 -s

As another example, use the following command line to lodpéodefault facility in /var/log/snort and send alerts to a
fast alert file:

Jsnort -c snort.conf -A fast -h 192.168.1.0/24

1.4.2 Understanding Standard Alert Output

When Snort generates an alert message, it will usually ligkekhe following:
[**] [116:56:1] (snort_decoder): T/TCP Detected [**]

The first number is the Generator ID, this tells the user wbatfonent of Snort generated this alert. For a list of
GIDs, please read etc/generators in the Snort source. drcéisie, we know that this event came from the “decode”
(116) component of Snort.

The second number is the Snort ID (sometimes referred togatire 1D). For a list of preprocessor SIDs, please see
etc/gen-msg.map. Rule-based SIDs are written directtytimt rules with thesid option. In this case;6 represents a
T/TCP event.

The third number is the revision ID. This number is primatiged when writing signatures, as each rendition of the
rule should increment this number with tre option.

1.4.3 High Performance Configuration

If you want Snort to gdast(like keep up with a 1000 Mbps connection), you need to uskaaiibgging and a unified
log reader such dsarnyard This allows Snort to log alerts in a binary form as fast assjtids while another program
performs the slow actions, such as writing to a database.

If you want a text file that's easily parsed, but still sometvast, try using binary logging with the “fast” output
mechanism.

This will log packets in tcpdump format and produce mininmatis. For example:

Jsnort -b -A fast -c snort.conf

12

1.4.4 Changing Alert Order

The default way in which Snort applies its rules to packetg n@ be appropriate for all installations. The Pass rules
are applied first, then the Drop rules, then the Alert rulebfarally, Log rules are applied.

ANOTE

Sometimes an errant pass rule could cause alerts to not ghow which case you can change the defgult
ordering to allow Alert rules to be applied before Pass rulBsr more information, please refer to the
--alert-before-pass option.

Several command line options are available to change trer ardvhich rule actions are taken.

o --alert-before-pass option forces alert rules to take affect in favor of a pass.rul

e --treat-drop-as-alert causes drop and reject rules and any associated alerts ¢gdped as alerts, rather
then the normal action. This allows use of an inline policylmpassive/IDS mode. The sdrop rules are not
loaded.

e --process-all-events option causes Snort to process every event associated pitbkat, while taking the

actions based on the rules ordering. Without this optiofefdecase), only the events for the first action based
on rules ordering are processed.

ANOTE

Pass rules are special cases here, in that the event pragesttrminated when a pass rule is encountered,
regardless of the use eprocess-all-events

1.5 Packet Acquisition

Snort 2.9 introduces the DAQ, or Data Acquisition libranyy packet /0. The DAQ replaces direct calls to PCAP
functions with an abstraction layer that facilitates opieraon a variety of hardware and software interfaces withou
requiring changes to Snort. It is possible to select the D@y6g tand mode when invoking Snort to perform PCAP
readback or inline operation, etc.

1.5.1 Configuration

Assuming that you did not disable static modules or changddfiault DAQ type, you can run Snort just as you always
did for file readback or sniffing an interface. However, youn salect and configure the DAQ when Snort is invoked
as follows:

Jsnort \
[-dag <type>] \
[--dag-mode <mode>] \
[--dag-dir <dir>] \
[--dag-var <var>]

config dag: <type>

config dag_dir: <dir>

config dag_var: <var>

config dag_mode: <mode>

<type> := pcap | afpacket | dump | nfq | ipq | ipfw

13

<mode> := read-file | passive | inline
<var> := arbitrary <name>=<value> passed to DAQ
<dir> ::= path where to look for DAQ module so’s

The DAQ type, mode, variable, and directory may be specifigetievia the command line or in the conf file. You
may include as many variables and directories as needegbwting the arg / config. DAQ type may be specified at
most once in the conf and once on the command line; if confijurdoth places, the command line overrides the
conf.

If the mode is not set explicitly, -Q will force it to inlinend if that hasn’t been set, -r will force it to read-file, and
if that hasn’t been set, the mode defaults to passive. Al3cand —dag-mode inline are allowed, since there is no
conflict, but -Q and any other DAQ mode will cause a fatal eatastart-up.

Note that if Snort finds multiple versions of a given libraifye most recent version is selected. This applies to static
and dynamic versions of the same library.

Jsnort [--dag-list <dir>]

The above command searches the specified directory for DAQulas and prints type, version, and attributes of each.
This feature is not available in the conf.

1.5.2 PCAP

pcap is the default DAQ. if snort is run w/o any DAQ argumeittwjill operate as it always did using this module.
These are equivalent;

Jsnort -i <device>
Jsnort -r <file>

Jsnort --daq pcap --dag-mode passive -i <device>
Jsnort --daq pcap --dag-mode read-file -r <file>

You can specify the buffer size pcap uses with:
Jsnort --daq pcap --dag-var buffer_size=<#bytes>

Note that the pcap DAQ does not count filtered packets.

MMAPed pcap

On Linux, a modified version of libpcap is available that iemplkents a shared memory ring buffer. Phil Woods
(cpw@lanl.gov) is the current maintainer of the libpcap liempentation of the shared memory ring buffer. The shared
memory ring buffer libpcap can be downloaded from his webathttp://public.lanl.gov/cpw/

Instead of the normal mechanism of copying the packets freimek memory into userland memory, by using a shared
memory ring buffer, libpcap is able to queue packets intceaesthbuffer that Snort is able to read directly. This change
speeds up Snort by limiting the number of times the packebjed before Snort gets to perform its detection upon
it.

Once Snort linked against the shared memory libpcap, ergliie ring buffer is done via setting the environment
variable PCAP.FRAMES PCAP.FRAMES:is the size of the ring buffer. According to Phil, the maximsgine is
32768, as this appears to be the maximum number of iovecstinelkcan handle. By usirgCAP.FRAMES=max
libpcap will automatically use the most frames possible.Eitmernet, this ends up being 1530 bytes per frame, for a
total of around 52 Mbytes of memory for the ring buffer alone.

14

http://public.lanl.gov/cpw/

1.5.3 AFPACKET

afpacket functions similar to the memory mapped pcap DAQhbugxternal library is required:

Jsnort --daq afpacket -i <device>
[-dag-var buffer_size_mb=<#MB>]
[--dag-var debug]

If you want to run afpacket in inline mode, you must set deticene or more interface pairs, where each member of
a pair is separated by a single colon and each pair is segddnaedouble colon like this:

eth0:ethl

or this:
eth0:ethl1:.eth2:eth3

By default, the afpacket DAQ allocates 128MB for packet mgm¥ou can change this with:
--dag-var buffer_size_mb=<#MB>

Note that the total allocated is actually higher, here’s wAgsuming the default packet memory with a snaplen of
1518, the numbers break down like this:

The frame size is 1518 (snaplen) + the size of the AFPacketeh€&6 bytes) = 1584 bytes.
. The number of frames is 128 MB / 1518 = 84733.

1.
2
3. The smallest block size that can fit at least one frame is 4 KB36bytes @ 2 frames per block.
4. As aresult, we need 84733/ 2 = 42366 blocks.

5

. Actual memory allocated is 42366 * 4 KB = 165.5 MB.

1.5.4 NFQ

NFQ is the new and improved way to process iptables packets:

Jsnort --daq nfg \
[--dag-var device=<dev>] \
[--dag-var proto=<proto>] \
[--dag-var queue=<qid>] \
[--dag-var queue_len=<glen>]

<dev> := ip | ethO, etc; default is IP injection
<proto> ::= ip4 | ip6 | ip*; default is ip4

<qgid> = 0..65535; default is 0
<glen> := 0..65535; default is 0

Notes on iptables are given below.

15

155 IPQ

IPQ is the old way to process iptables packets. It replaceéniine version available in pre-2.9 versions built with
this:

Jconfigure --enable-inline / -DGIDS
Start the IPQ DAQ as follows:
Jsnort --dag ipg \
[--dag-var device=<dev>] \

[--dag-var proto=<proto>] \

<dev> := ip | ethO, etc; default is IP injection
<proto> := ip4 | ip6; default is ip4

Notes on iptables are given below.

1.5.6 IPFW
IPFW is available for BSD systems. It replaces the inlinesiar available in pre-2.9 versions built with this:
Jconfigure --enable-ipfw / -DGIDS -DIPFW
This command line argument is no longer supported:
Jsnort -J <port#>
Instead, start Snort like this:
Jsnort --daq ipfw [--dag-var port=<port>]
<port> := 1..65535; default is 8000

* |PFW only supports ip4 traffic.

1.5.7 Dump

The dump DAQ allows you to test the various inline mode fesgwavailable in 2.9 Snort like injection and normaliza-
tion.

Jsnort -i <device> --dagq dump
Jsnort -r <pcap> --daq dump

By default a file named inline-out.pcap will be created conitey all packets that passed through or were generated
by snort. You can optionally specify a different name.

Jsnort --daq dump --dag-var file=<name>

dump uses the pcap daq for packet acquisition. It therefoes dot count filtered packets.

Note that the dump DAQ inline mode is not an actual inline mdé&thermore, you will probably want to have the
pcap DAQ acquire in another mode like this:

Jsnort -r <pcap> -Q --daq dump --dag-var load-mode=read-f ile
Jsnort -i <device> -Q --dag dump --dag-var load-mode=pass ive

16

1.5.

8 Statistics Changes

The Packet Wire Totals and Action Stats sections of Snoutput include additional fields:

The

Filtered count of packets filtered out and not handed to Snort for @maly

Injected packets Snort generated and sent, eg TCP resets.

Allow packets Snort analyzed and did not take action on.

Block packets Snort did not forward, eg due to a block rule.

Replace packets Snort modified.

Whitelist ~ packets that caused Snort to allow a flow to pass w/o inspgebti@ny analysis program.
Blacklist ~ packets that caused Snort to block a flow from passing.

Ignore packets that caused Snort to allow a flow to pass w/o inspebtidhis instance of Snort.

action stats show "blocked” packets instead of "droppadkets to avoid confusion between dropped packets

(those Snort didn't actually see) and blocked packets élsosrt did not allow to pass).

1.6

Reading Pcaps

Instead of having Snort listen on an interface, you can gigepiacket capture to read. Snort will read and analyze the
packets as if they came off the wire. This can be useful fdingsnd debugging Snort.

1.6.

Any

1 Command line arguments

of the below can be specified multiple times on the comniared(-r included) and in addition to other Snort

command line options. Note, however, that specifyipgap-reset and--pcap-show multiple times has the same
effect as specifying them once.

Option Description

-r <file> Read a single pcap.

--pcap-single=<file> Same as -r. Added for completeness.

--pcap-file=<file> File that contains a list of pcaps to read. Can specify patitép or directory to
recurse to get pcaps.

--pcap-list="<list>" A space separated list of pcaps to read.

--pcap-dir=<dir> A directory to recurse to look for pcaps. Sorted in ASCII arde

--pcap-filter=<filter> Shell style filter to apply when getting pcaps from file or dtary. This fil-
ter will apply to any--pcap-file or --pcap-dir arguments following. Use
--pcap-no-filter to delete filter for following--pcap-file or --pcap-dir
arguments or specifypcap-filter again to forget previous filter and to apply
to following --pcap-file or--pcap-dir ~ arguments.

--pcap-no-filter Reset to use no filter when getting pcaps from file or directory

--pcap-reset If reading multiple pcaps, reset snort to post-configuratitate before reading
next pcap. The default, i.e. without this option, is not teetestate.

--pcap-show Print a line saying what pcap is currently being read.

1.6.2 Examples

Read a single pcap

$ snort -r foo.pcap
$ snort --pcap-single=foo.pcap

17

Read pcaps from a file
$ cat foo.txt
fool.pcap
foo2.pcap
/home/foo/pcaps
$ snort --pcap-file=foo.txt

This will read fool.pcap, foo2.pcap and all files under /hfawpcaps. Note that Snort will not try to determine
whether the files under that directory are really pcap filesobr

Read pcaps from a command line list
$ snort --pcap-list="fool.pcap foo2.pcap foo3.pcap"

This will read fool.pcap, foo2.pcap and foo3.pcap.

Read pcaps under a directory
$ snort --pcap-dir="/home/foo/pcaps"

This will include all of the files under /home/foo/pcaps.

Using filters

$ cat foo.txt
fool.pcap
foo2.pcap
/home/foo/pcaps

$ snort --pcap-filter="*.pcap" --pcap-file=foo.txt
$ snort --pcap-filter="*.pcap" --pcap-dir=/home/foo/pc aps

The above will only include files that match the shell pattérpcap”, in other words, any file ending in ".pcap”.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-filter="*.cap" --pcap-dir=lhome/foo/pcaps

In the above, the first filter "*.pcap” will only be applied tbe pcaps in the file "foo.txt” (and any directories that are
recursed in that file). The addition of the second filter "htwill cause the first filter to be forgotten and then applied
to the directory /home/foo/pcaps, so only files ending imp:cwill be included from that directory.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-no-filter --pcap-dir=rhome/foo/pcaps

In this example, the first filter will be applied to foo.txt,eth no filter will be applied to the files found under
/home/foo/pcaps, so all files found under /home/foo/pcapbeincluded.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-no-filter --pcap-dir="home/foo/pcaps \
> --pcap-filter="*.cap" --pcap-dir=lhome/foo/pcaps2

In this example, the first filter will be applied to foo.txt,eth no filter will be applied to the files found under

/home/foo/pcaps, so all files found under /home/foo/pcaifishe included, then the filter "*.cap” will be applied
to files found under /home/foo/pcaps?2.

18

Resetting state

$ snort --pcap-dir=lhome/foo/pcaps --pcap-reset

The above example will read all of the files under /home/foafjs, but after each pcap is read, Snort will be reset to
a post-configuration state, meaning all buffers will be fadststatistics reset, etc. For each pcap, it will be like Snor
is seeing traffic for the first time.

Printing the pcap
$ snort --pcap-dir=home/foo/pcaps --pcap-show

The above example will read all of the files under /home/foafis and will print a line indicating which pcap is
currently being read.

1.7 Basic Output

Snort does a lot of work and outputs some useful statisticawitis done. Many of these are self-explanatory. The
others are summarized below. This does not include all pessutput data, just the basics.

1.7.1 Timing Statistics

This section provides basic timing statistics. It incluttgsl seconds and packets as well as packet processing rates
The rates are based on whole seconds, minutes, etc. andhamiy svhen non-zero.

Example:

Run time for packet processing was 175.856509 seconds
Snort processed 3716022 packets.
Snort ran for 0 days 0 hours 2 minutes 55 seconds
Pkts/min: 1858011
Pkts/sec: 21234

1.7.2 Packet I/O Totals

This section shows basic packet acquisition and injectegngqomunts obtained from the DAQ. If you are reading pcaps,
the totals are for all pcaps combined, unless you use —pEsagt;iin which case it is shown per pcap.

e Outstanding indicates how many packets are buffered awgitiocessing. The way this is counted varies per
DAQ so the DAQ documentation should be consulted for morm inf
o Filtered packets are not shown for pcap DAQs.

¢ Injected packets are the result of active response whicthheaonfigured for inline or passive modes.

Example:

Packet 1/0 Totals:
Received: 3716022
Analyzed: 3716022 (100.000%)

19

Dropped: 0 (0.000%)

Filtered: 0 (0.000%)
Outstanding: 0 (0.000%)
Injected: 0

1.7.3 Protocol Statistics

Traffic for all the protocols decoded by Snort is summarizethe breakdown section. This traffic includes internal

"pseudo-packets” if preprocessors such as frag3 and sireaenenabled so the total may be greater than the number
of analyzed packets in the packet 1/O section.

e Disc counts are discards due to basic encoding integritysfthat prevents Snort from decoding the packet.

e Otherincludes packets that contained an encapsulatib®tioat doesn’t decode.

e S5 G 1/2 is the number of client/server sessions stream5effludhe to cache limit, session timeout, session
reset.

Example:

Breakdown by protocol (includes rebuilt packets):

Eth: 3722347 (100.000%)
VLAN: 0 (0.000%)
IP4: 1782394 (47.884%)
Frag: 3839 (0.103%)
ICMP: 38860 (1.044%)
UDP: 137162 (3.685%)
TCP: 1619621 (43.511%)
IP6: 1781159 (47.850%)
IP6 Ext: 1787327 (48.016%)
IP6 Opts: 6168 (0.166%)
Frag6: 3839 (0.103%)
ICMPG6: 1650 (0.044%)
UDP6: 140446 (3.773%)
TCP6: 1619633 (43.511%)
Teredo: 18 (0.000%)
ICMP-IP: 0 (0.000%)
EAPOL: 0 (0.000%)
IP4/IP4: 0 (0.000%)
IP4/IP6: 0 (0.000%)
IP6/IP4: 0 (0.000%)
IP6/IP6: 0 (0.000%)
GRE: 202 (0.005%)
GRE Eth: 0 (0.000%)
GRE VLAN: 0 (0.000%)
GRE IP4: 0 (0.000%)
GRE IP6: 0 (0.000%)
GRE IP6 Ext: 0 (0.000%)
GRE PPTP: 202 (0.005%)
GRE ARP: 0 (0.000%)
GRE IPX: 0 (0.000%)
GRE Loop: 0 (0.000%)
MPLS: 0 (0.000%)
ARP: 104840 (2.817%)

20

IPX: 60 (0.002%)

Eth Loop: 0 (0.000%)
Eth Disc: 0 (0.000%)
IP4 Disc: 0 (0.000%)
IP6 Disc: 0 (0.000%)
TCP Disc: 0 (0.000%)
UDP Disc: 1385 (0.037%)
ICMP Disc: 0 (0.000%)
All Discard: 1385 (0.037%)
Other: 57876 (1.555%)
Bad Chk Sum: 32135 (0.863%)
Bad TTL: 0 (0.000%)
S5 G 1 1494 (0.040%)
S5 G 2 1654 (0.044%)
Total: 3722347

1.7.4 Actions, Limits, and Verdicts

Action and verdict counts show what Snort did with the paskieanalyzed. This information is only output in IDS
mode (when snort is run with the <conf> option).

e Alerts is the number of activate, alert, and block actiongepssed as determined by the rule actions. Here block
includes block, drop, and reject actions.

Limits arise due to real world constraints on processingtand available memory. These indicate potential actions
that did not happen:

e Match Limit counts rule matches were not processed due tadhfgy detection: max _queue _events
setting. The default is 5.

e Queue Limit counts events couldn’t be stored in the eventiguaeie to theonfig event _queue: max _queue
setting. The default is 8.

e Log Limit counts events were not alerted due totbefig event _queue: log setting. The defaultis 3.

e Event Limit counts events not alerted duestent _filter limits.
Verdicts are rendered by Snort on each packet:

e Allow = packets Snort analyzed and did not take action on.

e Block = packets Snort did not forward, eg due to a block rulBlotk” is used instead of "Drop” to avoid
confusion between dropped packets (those Snort didn'afigtsee) and blocked packets (those Snort did not
allow to pass).

e Replace = packets Snort modified, for example, due to nozatadn or replace rules. This can only happen in
inline mode with a compatible DAQ.

e Whitelist = packets that caused Snort to allow a flow to passindpection by any analysis program. Like
blacklist, this is done by the DAQ or by Snort on subsequeokets.

e Blacklist = packets that caused Snort to block a flow from jp@ssT his is the case when a block TCP rule fires.
If the DAQ supports this in hardware, no further packets badlseen by Snort for that session. If not, snort will
block each packet and this count will be higher.

e Ignore = packets that caused Snort to allow a flow to pass wfieiction by this instance of Snort. Like blacklist,
this is done by the DAQ or by Snort on subsequent packets.

21

Example:

Action Stats:

Alerts: 0 (0.000%)
Logged: 0 (0.000%)
Passed: 0 (0.000%)
Match Limit: 0
Queue Limit; 0
Log Limit: 0
Event Limit: 0
Verdicts:
Allow: 3716022 (100.000%)
Block: 0 (0.000%)
Replace: 0 (0.000%)
Whitelist: 0 (0.000%)
Blacklist: 0 (0.000%)
Ignore: 0 (0.000%)

1.8 Tunneling Protocol Support

Snort supports decoding of GRE, IP in IP and PPTP. To enaplgast) an extra configuration option is necessary:
$.Jconfigure --enable-gre

To enable IPv6 support, one still needs to use the configuratption:

$./configure --enable-ipv6

1.8.1 Multiple Encapsulations

Snort will not decode more than one encapsulation. Scenatich as
Eth IPv4 GRE IPv4 GRE IPv4 TCP Payload

or
Eth IPv4 IPv6 IPv4 TCP Payload

will not be handled and will generate a decoder alert.

1.8.2 Logging

Currently, only the encapsulated part of the packet is Idgge.
Eth IP1 GRE IP2 TCP Payload
gets logged as

Eth IP2 TCP Payload

22

and
Eth IP1 IP2 TCP Payload
gets logged as

Eth IP2 TCP Payload

ANOTE

Decoding of PPTP, which utilizes GRE and PPP, is not culyesugbported on architectures that require word
alignment such as SPARC.

1.9 Miscellaneous

1.9.1 Running Snort as a Daemon
If you want to run Snort as a daemon, you can the add -D switahya@ombination described in the previous sections.

Please notice that if you want to be able to restart Snort bgting a SIGHUP signal to the daemon, youstspecify
the full path to the Snort binary when you start it, for exaenpl

lusr/local/bin/snort -d -h 192.168.1.0/24 \
-| Ivarflog/snortlogs -c /usr/local/etc/snort.conf -s -D

Relative paths are not supported due to security concerns.

Snort PID File

When Snort is run as a daemon , the daemon creates a PID file inghdirectory. In Snort 2.6, thepid-path
command line switch causes Snort to write the PID file in tmeaory specified.

Additionally, the--create-pidfile switch can be used to force creation of a PID file even when unmting in
daemon mode.

The PID file will be locked so that other snort processes castaot. Use the-nolock-pidfile switch to not lock
the PID file.

1.9.2 Running in Rule Stub Creation Mode

If you need to dump the shared object rules stub to a diregtorymight need to use the —dump-dynamic-rules option.
These rule stub files are used in conjunction with the shabgetbrules. The path can be relative or absolute.

Jusr/local/bin/snort -c /usr/local/etc/snort.conf \
--dump-dynamic-rules=/tmp

This path can also be configured in the snort.conf using thégoption dump-dynamic-rules-path as follows:
config dump-dynamic-rules-path: /tmp/sorules

The path configured by command line has precedence over theoorfigured using dump-dynamic-rules-path.

23

lusr/local/bin/snort -c /ust/local/etc/snort.conf \
--dump-dynamic-rules

snort.conf:
config dump-dynamic-rules-path: /tmp/sorules

In the above mentioned scenario the dump path is set to /omybés.

1.9.3 Obfuscating IP Address Printouts

If you need to post packet logs to public mailing lists, yoghtiwant to use the -O switch. This switch obfuscates
your IP addresses in packet printouts. This is handy if yoo'tdeant people on the mailing list to know the IP
addresses involved. You can also combine the -O switch Wwéhh switch to only obfuscate the IP addresses of hosts
on the home network. This is useful if you don’t care who séesaiddress of the attacking host. For example, you
could use the following command to read the packets from dilegnd dump them to the screen, obfuscating only
the addresses from the 192.168.1.0/24 class C network:

Jsnort -d -v -r snortlog -O -h 192.168.1.0/24

1.9.4 Specifying Multiple-Instance Identifiers

In Snortv2.4,theG command line option was added that specifies an instanctfidefor the event logs. This option
can be used when running multiple instances of snort, eghatifferent CPUs, or on the same CPU but a different
interface. Each Snort instance will use the value specitiegeherate unique event IDs. Users can specify either a
decimal value{G 1) or hex value preceded by 053 0x11). This is also supported via a long optielogid

1.9.5 Snort Modes

Snort can operate in three different modes namely tap (Essiline, and inline-test. Snort policies can be conféglr
in these three modes too.

Explanation of Modes

e Inline

When Snort is in Inline mode, it acts as an IPS allowing drdesto trigger. Snort can be configured to run in
inline mode using the command line argument -Q and snortgaopfionpolicy _mode as follows:

snort -Q
config policy_mode:inline

e Passive

When Snort is in Passive mode, it acts as a IDS. Drop rules@readed (without —treat-drop-as-alert). Snort
can be configured to passive mode using the snort config opdliop _mode as follows:

config policy_mode:tap

e Inline-Test

Inline-Test mode simulates the inline mode of snort, alfmvevaluation of inline behavior without affecting
traffic. The drop rules will be loaded and will be triggeredaasvdrop (Would Drop) alert. Snort can be
configured to run in inline-test mode using the command lipgoo (—enable-inline-test) or using the snort
config optionpolicy _mode as follows:

24

snort --enable-inline-test
config policy_mode:inline_test

ANOTE

‘ Please note —enable-inline-test cannot be used in coigungith -Q. ‘

Behavior of different modes with rule options

| Rule Option] Inline Mode | Passive Mode | Inline-Test Mode |
reject Drop + Response Alert + Response | Wdrop + Response
react Blocks and send notice Blocks and send notice Blocks and send notice
normalize Normalizes packet Doesn't normalize | Doesn’t normalize
replace replace content Doesn't replace Doesn't replace
respond close session close session close session

Behavior of different modes with rules actions

| Adapter Mode] Snort args | config policymode | Drop Rule Handling

Passive snort --treat-drop-as-alert tap Alert

Passive snort tap Not Loaded
Passive snort --treat-drop-as-alert inline_test Alert

Passive snort inline_test Would Drop
Passive snort --treat-drop-as-alert inline Alert

Passive snort inline Not loaded + warning
Inline Test snort --enable-inline-test --treat-drop-as-alert tap Alert

Inline Test snort --enable-inline-test tap Would Drop

Inline Test snort --enable-inline-test --treat-drop-as-alert inline_test Alert

Inline Test snort --enable-inline-test inline_test Would Drop

Inline Test snort --enable-inline-test --treat-drop-as-alert inline Alert

Inline Test snort --enable-inline-test inline Would Drop

Inline snort -Q --treat-drop-as-alert tap Alert

Inline snort -Q tap Alert

Inline snort -Q --treat-drop-as-alert inline_test Alert

Inline snort -Q inline_test Would Drop

Inline snort -Q --treat-drop-as-alert inline Alert

Inline snort -Q inline Drop

1.10 More Information

Chaptef® contains much information about many configunaijmtions available in the configuration file. The Snort
manual page and the outputsfort -? or snort --help contain information that can help you get Snort running
in several different modes.

ANOTE

In many shells, a backslash)(is needed to escape the ?, so you may have todgme - \? instead of
snort -? for a list of Snort command line options.

The Snort web pagditp://www.snort.org) and the Snort Users mailing list:
http://marc.theaimsgroup.com/?I=snort- users

at snort-users@lists.sourceforge.net provide informative announcements as well as a venue fomuoamity
discussion and support. There’'s a lot to Snort, so sit battkadbeverage of your choosing and read the documentation
and mailing list archives.

25

http://www.snort.org
http://marc.theaimsgroup.com/?l=snort-users

Chapter 2

Configuring Snort

2.1 Includes

Theinclude keyword allows other snort config files to be included withie tsnort.conf indicated on the Snort
command line. It works much like an #include from the C progmzing language, reading the contents of the named
file and adding the contents in the place where the includersent appears in the file.

2.1.1 Format

include <include file path/name>

/\NOTE

| Note that there is no semicolon at the end of this line. |

Included files will substitute any predefined variable valirgo their own variable references. See SediionP.1.2 for
more information on defining and using variables in Snorffigdiies.

2.1.2 Variables
Three types of variables may be defined in Snort:

e var
e portvar

e ipvar

/\NOTE ’

Note 'ipvar’s are only enabled with IPv6 support. WithoB¥/6 support, use a regular 'var'.

These are simple substitution variables set withveg ipvar , orportvar keywords as follows:

var RULES_PATH rules/

portvar MY_PORTS [22,80,1024:1050]

ipvar MY_NET [192.168.1.0/24,10.1.1.0/24]

alert tcp any any -> $MY_NET $MY_PORTS (flags:S; msg:"SYN pa cket")
include $RULE_PATH/example.rule

26

IP Variables and IP Lists
IPs may be specified individually, in a list, as a CIDR block,any combination of the three. If IPv6 support is

enabled, IP variables should be specified using ’ipvareiagdtof 'var’. Using 'var’ for an IP variable is still allowed
for backward compatibility, but it will be deprecated in aufte release.

IPs, IP lists, and CIDR blocks may be negated with '!". Negatis handled differently compared with Snort versions
2.7.x and earlier. Previously, each element in a list wascélly OR’ed together. IP lists now OR non-negated
elements and AND the result with the OR’ed negated elements.

The following example list will match the IP 1.1.1.1 and IBrfr 2.2.2.0 to 2.2.2.255, with the exception of IPs 2.2.2.2
and 2.2.2.3.

[1.1.1.1,2.2.2.0/24,1[2.2.2.2,2.2.2.3]]

The order of the elements in the list does not matter. The@hrany’ can be used to match all IPs, although "lany’
is not allowed. Also, negated IP ranges that are more geti@nalnon-negated IP ranges are not allowed.

See below for some valid examples if IP variables and IP. lists

ipvar EXAMPLE [1.1.1.1,2.2.2.0/24,1[2.2.2.2,2.2.2.3]]
alert tcp $EXAMPLE any -> any any (msg:"Example”; sid:1;)

alert tcp [1.0.0.0/8,11.1.1.0/24] any -> any any (msg:"Exa mple";sid:2;)

The following examples demonstrate some invalid uses oflfables and IP lists.

Use of lany:

ipvar EXAMPLE any
alert tcp I$EXAMPLE any -> any any (msg:"Example”;sid:3;)

Different use of lany:

ipvar EXAMPLE lany
alert tcp $EXAMPLE any -> any any (msg:"Example”;sid:3;)

Logical contradictions:
ipvar EXAMPLE [1.1.1.1,11.1.1.1]
Nonsensical negations:

ipvar EXAMPLE [1.1.1.0/24,!1.1.0.0/16]

Port Variables and Port Lists
Portlists supports the declaration and lookup of ports aedépresentation of lists and ranges of ports. Variables,

ranges, or lists may all be negated with '!I". Also, 'any’ wélpecify any ports, but 'lany’ is not allowed. Valid port
ranges are from 0 to 65535.

Lists of ports must be enclosed in brackets and port ranggdmapecified with a’;’, such as in:

[10:50,888:900]

27

Port variables should be specified using 'portvar’. The Usear’ to declare a port variable will be deprecated in a
future release. For backwards compatibility, a 'var’ calh lsé used to declare a port variable, provided the variable
name either ends withPORT’ or begins with 'PORT.

The following examples demonstrate several valid usagbstbfport variables and port lists.

portvar EXAMPLE1 80

var EXAMPLE2_PORT [80:90]

var PORT_EXAMPLE2 [1]

portvar EXAMPLE3 any

portvar EXAMPLE4 [170:90]

portvar EXAMPLE5 [80,91:95,100:200]

alert tcp any $EXAMPLEL -> any $EXAMPLE2_PORT (msg:"Exampl e"; sid:1;)
alert tcp any $PORT_EXAMPLE2 -> any any (msg:"Example”; sid :2;)

alert tcp any 90 -> any [100:1000,9999:20000] (msg:"Exampl e"; sid:3;)

Several invalid examples of port variables and port lisescmonstrated below:

Use of lany:

portvar EXAMPLES lany
var EXAMPLES lany

Logical contradictions:
portvar EXAMPLE6 [80,!80]
Ports out of range:
portvar EXAMPLE7 [65536]
Incorrect declaration and use of a port variable:

var EXAMPLE8 80
alert tcp any $EXAMPLE8 -> any any (msg:"Example”; sid:4;)

Port variable used as an IP:

alert tcp $EXAMPLEL any -> any any (msg:"Example”; sid:5;)

Variable Modifiers

Rule variable names can be modified in several ways. You cimedmeta-variables using the $ operator. These can
be used with the variable modifier operatdrand- , as described in the following table:

28

Variable Syntax Description

var Defines a meta-variable.

$(var) or $var Replaces with the contents of varialube .

$(var:-default) Replaces the contents of the variatde with “default” if var is undefined.

$(var:?message) Replaces with the contents of variabt® or prints out the error message and
exits.

Here is an example of advanced variable usage in action:

ipvar MY_NET 192.168.1.0/24
log tcp any any -> $(MY_NET:?MY_NET is undefined!) 23

Limitations

When embedding variables, types can not be mixed. For iostquort variables can be defined in terms of other port
variables, but old-style variables (with the 'var’ keywdodn not be embedded inside a 'portvar’.

Valid embedded variable:

portvar pvarl 80
portvar pvar2 [$pvarl,90]

Invalid embedded variable:

var pvarl 80
portvar pvar2 [$pvarl,90]

Likewise, variables can not be redefined if they were preslipdefined as a different type. They should be renamed
instead:

Invalid redefinition:

var pvar 80
portvar pvar 90

2.1.3 Config

Many configuration and command line options of Snort can leeifipd in the configuration file.

Format

config <directive> [: <value>]

29

Config Directive

Description

SSOor

per

all

config alert ~ _with _interface _name Appends interface name to aleshért -|).

config alertfile: <filename> Sets the alerts output file.

config asnl: <max-nodes> Specifies the maximum number of nodes to track when doing
ASN1 decoding. See Sectibn3.3.31 for more information and
examples.

config autogenerate _preprocessor If Snort was configured to enable decoder and preproce

_decoder _rules rules, this option will cause Snort to revert back to it'sgori
nal behavior of alerting if the decoder or preprocessor geas
an event.

config bpf _file: <filename> Specifies BPF filterssfort -F).

config checksum _drop: <types> Types of packets to drop if invalid checksums. Valueane,
noip , notcp , noicmp , noudp, ip, tcp , udp, icmp or all
(only applicable in inline mode and for packets checked
checksum _mode config option).

config checksum _mode: <types> Types of packets to calculate checksums. Valwese, noip ,
notcp , noicmp , noudp, ip , tcp , udp, icmp orall .

config chroot: <dir> Chroots to specified disfort -t).

config classification: <class> See Tabl&3]2 for a list of classifications.

config daemon Forks as a daemosrort -D).

config decode _data _link Decodes Layer2 headesrt -).

config default _rule _state: <state> Global configuration directive to enable or disable the ingd
of rules into the detection engine. Default (with or withaolit
rective) is enabled. Specifisabled to disable loading rules,

config dag: <type> Selects the type of DAQ to instantiate. The DAQ with the high-
est version of the given type is selected if there are meltifl
the same type (this includes any built-in DAQS).

config dag _mode: <mode> Select the DAQ mode: passive, inline, or read-file. Not

DAQs support modes. See the DAQ distro README for possi-

ble DAQ modes or list DAQ capabilities for a brief summary|

config dag _var: <name=value>

Set a DAQ specific variable. Snort just passes this infolonati

down to the DAQ. See the DAQ distro README for possil
DAQ variables.

config daq _dir; <dir>

Tell Snort where to look for available dynamic DAQ modulg
This can be repeated. The selected DAQ will be the one
the latest version.

config dagq _list: [<dir>]

Tell Snort to dump basic DAQ capabilities and exit. You can
tionally specify a directory to include any dynamic DAQsifrg
that directory. You can also preceed this option with extA&D
directory options to look in multiple directories.

30

e

BS,
with

Op

config detection:
<method>]

[search-method

Select type of fast pattern matcher algorithm to use.
e search-method <method>

— Queued match search methods - Matches
gueued until the fast pattern matcher is finished w

are
ith

the payload, then evaluated. This was found to gen-
erally increase performance through fewer cache
misses (evaluating each rule would generally blow

away the fast pattern matcher state in the cache).

x ac andac-q - Aho-Corasick Full (high mem;
ory, best performance).

x ac-bnfa andac-bnfa-q - Aho-Corasick Bi-
nary NFA (low memory, high performance)

x lowmem and lowmem-q - Low Memory Key-

word Trie (low memory, moderate perfor

mance)

* ac-split - Aho-Corasick Full with ANY-
ANY port group evaluated separately (low
memory, high performance). Note th
is shorthand for search-method ac,
split-any-any

x intel-com - Intel CPM library (must have
compiled Snort with location of libraries to er
able this)

— No queue search methods - The "ng” option spgc-
ifies that matches should not be queued and evalu-

ated as they are found.

x ac-nq - Aho-Corasick Full (high memory, best

performance).
x ac-bnfa-nq - Aho-Corasick Binary NFA (low

memory, high performance). This is the defal

search method if none is specified.

x lowmem-ng - Low Memory Keyword Trie (low
memory, moderate performance)

— Other search methods (the above are considere
perior to these)
x ac-std - Aho-Corasick Standard (high men
ory, high performance)
x acs - Aho-Corasick Sparse (high memo
moderate performance)
x ac-banded - Aho-Corasick Banded (higl
memory, moderate performance)

* ac-sparsebands - Aho-Corasick Sparse
Banded (high memory, moderate performan

t

0 su-

ce)

31

config detection: [split-any-any]
[search-optimize] [max-pattern-len
<int>]

Other options that affect fast pattern matching.

e split-any-any

e search-optimize

e max-pattern-len <integer>

— A memory/performance tradeoff. By default, AN

— This is a memory optimization that specifies t
maximum length of a pattern that will be put in the

ANY port rules are added to every non ANY-AN

port group so that only one port group rule eva

Y

uation needs to be done per packet. Not putting

the ANY-ANY port rule group into every other po

t

group can significantly reduce the memory footprint
of the fast pattern matchers if there are many ANY-

ANY port rules. But doing so may require two part

group evaluations per packet - one for the spedific

port group and one for the ANY-ANY port grouy

thus potentially reducing performance. This optipn

is generic and can be used with aegrch-method
but was specifically intended for use with the

search-method where the memory footprint is sig-

nificantly reduced though overall fast pattern p
formance is better thaac-bnfa . Of note is that

the lower memory footprint can also increase per-
formance through fewer cache misses. Default is

not to split the ANY-ANY port group.

search-method ac or ac-split by dynamically
determining the size of a state based on the t
number of states. When used watibnfa , some
fail-state resolution will be attempted, potential

increasing performance. Default is not to optimize.

— Optimizes fast pattern memory when used with

ptal

ly

he

fast pattern matcher. Patterns longer than this length

will be truncated to this length before inserting in
the pattern matcher. Useful when there are vi
long contents being used and truncating the pat
won't diminish the uniqueness of the patterns. N
that this may cause more false positive rule eva
ations, i.e. rules that will be evaluated becaus
fast pattern was matched, but eventually fail, hqg
ever CPU cache can play a part in performance

smaller memory footprint of the fast pattern match
can potentially increase performance. Default ig
not set a maximum pattern length.

to
ery
ern
pte
lu-
e a
W_
50 a
er
to

32

config detection:

[no _stream _inserts]

[max _queue _events <int>]
[enable-single-rule-group]
[bleedover-port-limit]

Other detection engine options.

e no_stream _inserts

— Specifies that stream inserted packets should nat be
evaluated against the detection engine. This is a|po-

tential performance improvement with the idea that
the stream rebuilt packet will contain the payload

in the inserted one so the stream inserted packet
doesn’t need to be evaluated. Default is to inspect

stream inserts.

e Mmax_queue _events <integer>

— Specifies the maximum number of events to queue

per packet. Default is 5 events.
e enable-single-rule-group

— Putall rules into one port group. Not recommendgd.
Default is not to do this.

o bleedover-port-limit

— The maximum number of source or destination
ports designated in a rule before the rule is congid-
ered an ANY-ANY port group rule. Defaultis 1024.

33

config detection: [debug]
[debug-print-nocontent-rule-tests]
[debug-print-rule-group-build-details]
[debug-print-rule-groups-uncompiled]
[debug-print-rule-groups-compiled)]
[debug-print-fast-pattern]
[bleedover-warnings-enabled]

Options for detection engine debugging.

e debug

— Prints fast pattern information for a particular pg

group.

debug-print-nocontent-rule-tests

t

=

— Prints port group information during packet evalua-

tion.

debug-print-rule-group-build-details

— Prints port group information during port group

compilation.

debug-print-rule-groups-uncompiled

— Prints uncompiled port group information.

debug-print-rule-groups-compiled

— Prints compiled port group information.

debug-print-fast-pattern

— For each rule with fast pattern content, prints inf

mation about the content being used for the fast pat-

tern matcher.

bleedover-warnings-enabled

— Prints a warning if the number of source
destination ports used in a rule exceed
bleedover-port-limit forcing the rule to be
moved into the ANY-ANY port group.

or
he

config disable _decode _alerts

Turns off the alerts generated by the decode phase of Snor

config disable _inline _init _failopen Disables failopen thread that allows inline traffic to pass
while Snort is starting up. Only useful if Snort was
configured with —enable-inline-init-failopen. snprt
--disable-inline-init-failopen)

config disable _ipopt _alerts Disables IP option length validation alerts.

config disable _tcpopt _alerts Disables option length validation alerts.

config Turns off alerts generated by experimental TCP options.

disable _tcpopt _experimental _alerts

config disable _tcpopt _obsolete _alerts

Turns off alerts generated by obsolete TCP options.

config disable _tcpopt _ttcp _alerts

Turns off alerts generated by T/TCP options.

config disable _ttcp _alerts

Turns off alerts generated by T/TCP options.

config dump _chars _only

Turns on character dumpsfrt -C).

config dump _payload

Dumps application layesfort -d).

config dump _payload _verbose

Dumps raw packet starting at link layen¢rt -X).

config enable _decode _drops

Enables the dropping of bad packets identified by decoddy (
applicable in inline mode).

@]

n

config enable _decode _oversized _alerts

Enable alerting on packets that have headers containirgghe
fields for which the value is greater than the length of thé&pag

34

Enable dropping packets that have headers containinghHengt

fields for which the value is greater than the length of thé&pag
enable _decode _oversized _alerts must also be enabled fg
this to be effective (only applicable in inline mode).

=

Snort's packet decoder only decodes Teredo (IPv6 over UDP
over IPv4) traffic on UDP port 3544. This option makes Snort

decode Teredo traffic on all UDP ports.

Enables the dropping of bad packets with bad/truncated P
tions (only applicable in inline mode).

Enables support for MPLS multicast. This option is need
when the network allows MPLS multicast traffic. When th
option is off and MPLS multicast traffic is detected, Snor
generate an alert. By default, it is off.

op

ed
is
i

Enables support for overlapping IP addresses in an MPLS|net-
work. In a normal situation, where there are no overlapping

IP addresses, this configuration option should not be tuoned
However, there could be situations where two private neka/o

r

share the same IP space and different MPLS labels are used to

differentiate traffic from the two VPNSs. In such a situatitins
configuration option should be turned on. By default, it i of

Enables the dropping of bad packets with bad/truncated TCP

option (only applicable in inline mode).

config enable _decode _oversized _drops
config enable _deep _teredo _inspection
config enable _ipopt _drops

config enable _mpls _multicast

config enable _mpls _overlapping _ip
config enable _tcpopt _drops

config

enable _tcpopt _experimental _drops

Enables the dropping of bad packets with experimental TGP
tion. (only applicable in inline mode).

config enable _tcpopt _obsolete _drops

Enables the dropping of bad packets with obsolete TCP opt
(only applicable in inline mode).

config enable _tcpopt _ttcp _drops

op

ion

Enables the dropping of bad packets with T/TCP option. (gnly

applicable in inline mode).

config enable _ttcp _drops Enables the dropping of bad packets with T/TCP option. (gnly
applicable in inline mode).

config event _filter. memcap Set global memcap in bytes for thresholding. Default i

<bytes> 1048576 bytes (1 megabyte).

config event _queue: [max _queue Specifies conditions about Snort’s event queue. You carhase t

sed

a

<num>] [log <num>] [order _events following options:
<order>]
e maxqueue <integer > (max events supported)
e log <integer > (number of events to log)
e order _events [priority |content _length] (how to
order events within the queue)
See Sectiof Z.4.4 for more information and examples.
config flowbits _size; <num-hits> Specifies the maximum number of flowbit tags that can be U
within a rule set. The defaultis 1024 bits and maximum is 2096
config ignore _ports: <proto> Specifies ports to ignore (useful for ignoring noisy NF Sficaf
<port-list> Specify the protocol (TCP, UDP, IP, or ICMP), followed by
list of ports. Port ranges are supported.
config interface: <iface> Sets the network interfacenprt -i).

35

config ipv6 _frag:

[bsd _icmp _frag _alert on|off]

[, bad _ipv6 _frag _alert on]off]
[frag _timeout <secs>] |,
max_frag _sessions <max-track>]

The following options can be used:

e bsd _icmp _frag _alert on|off
to alert. Default is on)

(Specify whether or no

e bad_ipv6 _frag _alert on|off
to alert. Default is on)

(Specify whether or no

e frag _timeout <integer > (Specify amount of time in
seconds to timeout first frag in hash table)

e maxfrag _sessions <integer > (Specify the numbe
of fragments to track in the hash table)

config logdir; <dir>

Sets the logdirgnort -|).

config max _attribute _hosts:

<hosts>

Sets a limit on the maximum number of hosts to read fn

om

the attribute table. Minimum value is 32 and the maximum is

524288 (512k). The default is 10000. If the number of hg
in the attribute table exceeds this value, an error is logget
the remainder of the hosts are ignored. This option is onty g
ported with a Host Attribute Table (see sectiod 2.7).

sts

pU

config max _mpls _labelchain _len:
<num-hdrs>

Sets a Snort-wide limit on the number of MPLS header
packet can have. Its default value is -1, which means thag¢t
is no limit on label chain length.

S a
he

config min _ttl: <ttl>

Sets a Snort-wide minimum ttl to ignore all traffic.

config mpls _payload _type:
ipv4|ipvé|ethernet

Sets a Snort-wide MPLS payload type. In addition to ipv46if
and ethernet are also valid options. The default MPLS paly
type is ipv4

config no _promisc

Disables promiscuous mod&ért -p).

config nolog

Disables logging. Note: Alerts will still occursifort -N).

config nopcre

Disables pcre pattern matching.

config obfuscate

Obfuscates IP Addresses¢rt -O).

config order: <order> Changes the order that rules are evaluated, eg: pass aert lo
activation.

config pcre _match _limit: Restricts the amount of backtracking a given PCRE option.|Fo

<integer > example, it will limit the number of nested repeats withined-p
tern. A value of -1 allows for unlimited PCRE, up to the PCRE
library compiled limit (around 10 million). A value of O relsi
in no PCRE evaluation. The snort default value is 1500.

config pcre _match _limit _recursion: Restricts the amount of stack used by a given PCRE option. A

<integer > value of -1 allows for unlimited PCRE, up to the PCRE library
compiled limit (around 10 million). A value of O results in no
PCRE evaluation. The snort default value is 1500. This optio
is only useful if the value is less than there _match _limit

config pkt _count: <N> Exits after N packetssfort -n).

config policy _version: Supply versioning information to configuration files. Bage-

<base-version-string > sion should be a string in all configuration files including |n

[<binding-version-string >] cluded ones. In addition, binding version must be in any file
configured withconfig binding . This option is used to avoid
race conditions when modifying and loading a configuration
within a short time span - before Snort has had a chance tojload
a previous configuration.

config profile _preprocs Print statistics on preprocessor performance. See SEZIoh
for more details.

config profile _rules Print statistics on rule performance. See SedfionP.5.infime

details.

36

config quiet

Disables banner and status repossot -q). NOTE: The
command line switchq takes effect immediately after prg
cessing the command line parameters, whereas usiriig

quiet in snort.conf takes effect when the configuration ling

snort.conf is parsed. That may occur after other configomat

settings that result in output to console or syslog.

config read _bin _file: <pcap>

Specifies a pcap file to use (instead of reading from netwa
same effect as «tf> option.

config reference: <ref>

Adds a new reference system to Snort, eg: my
http://myurl.com/?id=

config reference _net <cidr>

For IP obfuscation, the obfuscated net will be used if thekpta
contains an IP address in the reference net. Also used tg
termine how to set up the logging directory structure for

session post detection rule option and ASCII output plugir
an attempt is made to name the log directories after the IP
dress that is not in the reference net.

config response: [attempts
<count>] [, device <dev>]

Set the number of strafing attempts per injected respongera
the device, such as eth0, from which to send responses. T
options may appear in any order but must be comma separ
The are intended for passive mode.

config set _gid: <gid>

Changes GID to specified GIBrort -g).

config set _uid: <uid>

Sets UID to<id> (snort -u).

config show _year

Shows year in timestampsnprt -y).

config snaplen: <bytes>

Set the snaplength of packet, same effecPas<snaplen > or
--snaplen <snaplen > options.

config so _rule _memcap: <bytes>

Set global memcap in bytes for so rules that dynamically-4
cate memory for storing session data in the stream preprd
sor. A value of 0 disables the memcap. Default is 0. Maxim
value is the maximum value an unsigned 32 bit integer can
which is 4294967295 or 4GB.

n

the

ad-
nd

hese
ated.

o]
ces
um
hold

config stateful

Sets assurance mode for stream (stream is established).

config tagged _packet _limit:
<max-tag>

When a metric other thapackets is used in a tag option i
a rule, this option sets the maximum number of packets t(
tagged regardless of the amount defined by the other mg
See Sectiol 3.7.5 on using the tag option when writing ry
for more details. The default value when this option is nat-c
figured is 256 packets. Setting this option to a value of 0
disable the packet limit.

D be
ptric.
iles
o)
will

config threshold: memcap <bytes>

Set global memcap in bytes for thresholding. Default
1048576 bytes (1 megabyte). (This is deprecated. Use ¢
eventfilter instead.)

is
bnfig

config timestats

_interval: <secs>

Set the amount of time in seconds between logging time s
Default is 3600 (1 hour). Note this option is only availatie
Snort was built to use time stats witlenable-timestats

tats.

config umask: <umask>

Sets umask when runningnprt -m).

config utc

Uses UTC instead of local time for timestampsoft -U).

config verbose

Uses verbose logging to STDOU3nrt -v).

config vian _agnostic

Causes Snort to ignore vlan headers for the purposes of col
tion tracking. This option is only valid in the base configioa
when using multiple configurations, and the default is off.

nne

config policy _mode:
tap|inline|inline _test

Sets the policy mode to eithepassive , inline or

inline _test .

37

2.2 Preprocessors

Preprocessors were introduced in version 1.5 of Snort. @hey the functionality of Snort to be extended by allowing
users and programmers to drop modular plugins into Snaly fasily. Preprocessor code is run before the detection
engine is called, but after the packet has been decoded. adketocan be modified or analyzed in an out-of-band
manner using this mechanism.

Preprocessors are loaded and configured usingrépeocessor ~ keyword. The format of the preprocessor directive
in the Snort config file is:

preprocessor <name>: <options>

2.2.1 Frag3

The frag3 preprocessor is a target-based IP defragmemtatidule for Snort. Frag3 is intended as a replacement for
the frag2 defragmentation module and was designed witholfmfing goals:

1. Faster execution than frag2 with less complex data manageme

2. Target-based host modeling anti-evasion techniques.

The frag2 preprocessor used splay trees extensively foagiag the data structures associated with defragmenting
packets. Splay trees are excellent data structures to use ydu have some assurance of locality of reference for the
data that you are handling but in high speed, heavily frageteanvironments the nature of the splay trees worked
against the system and actually hindered performance 3krsgs the sfxhash data structure and linked lists for data
handling internally which allows it to have much more préalide and deterministic performance in any environment
which should aid us in managing heavily fragmented enviremis

Target-based analysis is a relatively new concept in nétlased intrusion detection. The idea of a target-based
system is to model the actual targets on the network insteagtely modeling the protocols and looking for attacks

within them. When IP stacks are written for different opergtsystems, they are usually implemented by people
who read the RFCs and then write their interpretation of vihatRFC outlines into code. Unfortunately, there are

ambiguities in the way that the RFCs define some of the edgditimms that may occur and when this happens

different people implement certain aspects of their IPkstatifferently. For an IDS this is a big problem.

In an environment where the attacker can determine whae stiylP defragmentation is being used on a partic-
ular target, the attacker can try to fragment packets suahttte target will put them back together in a specific

manner while any passive systems trying to model the hoiictfave to guess which way the target OS is going

to handle the overlaps and retransmits. As | like to say, éf dttacker has more information about the targets on
a network than the IDS does, it is possible to evade the ID% iBhwhere the idea for “target-based IDS” came

from. For more detail on this issue and how it affects IDS,ckheut the famous Ptacek & Newsham paper at
http://www.snort.org/docs/idspaper/

The basic idea behind target-based IDS is that we tell theififi@mation about hosts on the network so that it can
avoid Ptacek & Newsham style evasion attacks based on iattiwmabout how an individual target IP stack operates.
Vern Paxson and Umesh Shankar did a great paper on this \Ecyind2003 that detailed mapping the hosts on a net-
work and determining how their various IP stack implemeatethandled the types of problems seen in IP defragmen-
tation and TCP stream reassembly. Check it olattpt/www.icir.org/vern/papers/activemap-0ak03.pdf

We can also present the IDS with topology information to dviol L-based evasions and a variety of other issues, but
that's a topic for another day. Once we have this informaitvercan start to really change the game for these complex
modeling problems.

Frag3 was implemented to showcase and prototype a targetHaodule within Snort to test this idea.

Frag 3 Configuration

Frag3 configuration is somewhat more complex than frag2.r&hee at least two preprocessor directives required
to activate frag3, a global configuration directive and agie® instantiation. There can be an arbitrary number of

38

http://www.snort.org/docs/idspaper/
http://www.icir.org/vern/papers/activemap-oak03.pdf

engines defined at startup with their own configuration, Il one global configuration.

Global Configuration

e Preprocessor namé&ag3 _global

e Available options: NOTE: Global configuration options aceroma separated.

— maxfrags <number > - Maximum simultaneous fragments to track. Default is 8192.
— memcap <bytes > - Memory cap for self preservation. Default is 4MB.

— prealloc _frags <number > - Alternate memory management mode. Use preallocated gagnodes
(faster in some situations).

— disabled - Option to turn off the preprocessor. By default this opimturned off. When the preprocessor
is disabled only the options memcap, prealioemcap, and preallaitags are applied when specified with
the configuration.

Engine Configuration

e Preprocessor namé&ag3 _engine

¢ Available options: NOTE: Engine configuration options grace separated.

— timeout <seconds > - Timeout for fragments. Fragments in the engine for longantthis period will
be automatically dropped. Default is 60 seconds.

— min_ttl <value > - Minimum acceptable TTL value for a fragment packet. Def@ill. The accepted
range for this option is 1 - 255.

— detect _anomalies - Detect fragment anomalies.

— bind _to <ip _list > -IP Listto bind this engine to. This engine will only run faagkets with destination
addresses contained within the IP List. Default valualis

— overlap _limit <number> - Limits the number of overlapping fragments per packet. défault is "0”
(unlimited). This config option takes values equal to or ggethan zero. This is an optional parameter.
detectanomalies option must be configured for this option to takecef

— min _fragment _length <number> - Defines smallest fragment size (payload size) that shoailcbinsid-
ered valid. Fragments smaller than or equal to this limitamesidered malicious and an event is raised,
if detectanomalies is also configured. The default is "0” (unlimiteifile minimum is "0”. This is an
optional parameter. deteahomalies option must be configured for this option to takecef

— policy <type > - Select a target-based defragmentation mode. Availaplestare first, last, bsd, bsd-
right, linux. Default type is bsd.

The Paxson Active Mapping paper introduced the terminofoay3 is using to describe policy types. The
known mappings are as follows. Anyone who develops more ingpfand would like to add to this list
please feel free to send us an email!

39

Platform | Type |

AlX 2 BSD
AlX4.38.9.3 BSD
Cisco 10S Last
FreeBSD BSD
HP JetDirect (printer) BSD-right
HP-UX B.10.20 BSD
HP-UX 11.00 First
IRIX 4.0.5F BSD
IRIX 6.2 BSD
IRIX 6.3 BSD
IRIX64 6.4 BSD
Linux 2.2.10 linux
Linux 2.2.14-5.0 linux
Linux 2.2.16-3 linux
Linux 2.2.19-6.2.10smp linux
Linux 2.4.7-10 linux
Linux 2.4.9-31SGI 1.0.2smp linux
Linux 2.4 (RedHat 7.1-7.3) linux
MacOS (version unknown) First
NCD Thin Clients BSD
OpenBSD (version unknown) | linux
OpenBSD (version unknown) | linux
OpenVMS 7.1 BSD
0OS/2 (version unknown) BSD
OSF1V3.0 BSD
OSF1V3.2 BSD
OSF1Vv4.0,5.0,5.1 BSD
Sun0S 4.1.4 BSD
Sun0S 5.5.1,5.6,5.7,5.8 First
Tru64 Unix V5.0A,V5.1 BSD
Vax/VMS BSD
Windows (95/98/NT4/W2K/XP)| First

Format
Note in the advanced configuration below that there are thingines specified running wittinux, first andlast
policies assigned. The first two engines are bound to spéBifaxidress ranges and the last one applies to all other

traffic. Packets that don’t fall within the address requieens of the first two engines automatically fall through te th
third one.

Basic Configuration

preprocessor frag3_global
preprocessor frag3_engine

Advanced Configuration

preprocessor frag3_global: prealloc_nodes 8192

preprocessor frag3_engine: policy linux, bind_to 192.168 .1.0/24
preprocessor frag3_engine: policy first, bind_to [10.1.4 7.0/24,172.16.8.0/24]
preprocessor frag3_engine: policy last, detect anomalie S

40

Frag 3 Alert Output

Frag3 is capable of detecting eight different types of anm®alts event output is packet-based so it will work with
all output modes of Snort. Read the documentation irdtessignatures directory with filenames that begin with
“123-" for information on the different event types.

2.2.2 Stream5

The Stream5 preprocessor is a target-based TCP reassemdhlyerfor Snort. It is capable of tracking sessions for
both TCP and UDP. With Stream5, the rule 'flow’ and 'flowbitgywvords are usable with TCP as well as UDP traffic.

Transport Protocols

TCP sessions are identified via the classic TCP "connectidBP sessions are established as the result of a series of
UDP packets from two end points via the same set of ports. |GMBsages are tracked for the purposes of checking
for unreachable and service unavailable messages, wHattiegly terminate a TCP or UDP session.

Target-Based

Streamb5, like Frag3, introduces target-based actionsdodlng of overlapping data and other TCP anomalies. The
methods for handling overlapping data, TCP Timestampsa batSYN, FIN and Reset sequence numbers, etc. and
the policies supported by Stream5 are the results of extenssearch with many target operating systems.

Stream API

Streamb5 fully supports the Stream API, other protocol ndimaes/preprocessors to dynamically configure reassembly
behavior as required by the application layer protocohiifg sessions that may be ignored (large data transferk, et
and update the identifying information about the sessippl{eation protocol, direction, etc) that can later be ulsed
rules.

Anomaly Detection

TCP protocol anomalies, such as data on SYN packets, da@edmutside the TCP window, etc are configured via
thedetect _anomalies option to the TCP configuration. Some of these anomaliesetected on a per-target basis.
For example, a few operating systems allow data in TCP SYKeiacwhile others do not.

Stream5 Global Configuration

Global settings for the Stream5 preprocessor.

preprocessor stream5_global; \
[track tcp <yes|no>], [max_tcp <number>], \
[memcap <number bytes>], \
[track_udp <yes|no>], [max_udp <number>], \
[track_icmp <yes|no>], [max_icmp <number>], \
[flush_on_alert], [show_rebuilt_packets], \
[prune_log_max <bytes>], [disabled]

41

Option

Description

track _tcp <yes|no>

Track sessions for TCP. The default is "yes”.

max.tcp <num sessions>

Maximum simultaneous TCP sessions tracked. The defauR62144", maxi-
mum is "1048576”, minimum is "1”.

memcap <num bytes>

Memcap for TCP packet storage. The default is "8388608” (§MiBaximum is
"1073741824” (1GB), minimum is "32768” (32KB).

track _udp <yes|no>

Track sessions for UDP. The default is "yes”.

max_.udp <num sessions>

Maximum simultaneous UDP sessions tracked. The default34072", maxi-
mum is "1048576”, minimum is "1”.

track _icmp <yes|no>

Track sessions for ICMP. The default is "no”.

max_icmp <num sessions>

Maximum simultaneous ICMP sessions tracked. The defatB5836”, maxi-
mum is "1048576”, minimum is "1”.

disabled Option to disable the stream5 tracking. By default thisapts turned off. When
the preprocessor is disabled only the options memcap, topgxmaxudp and
max.icmp are applied when specified with the configuration.

flush _on _alert Backwards compatibility. Flush a TCP stream when an alageiserated on that
stream. The default is set to off.

show_rebuilt _packets Print/display packet after rebuilt (for debugging). Théeddt is set to off.

prune _log _max <num bytes>

Print a message when a session terminates that was consumiegthan the
specified number of bytes. The default is "1048576” (1MB)nimum can be
either "0” (disabled) or if not disabled the minimum is "102ahd maximum is
"1073741824".

Stream5 TCP Configuration

Provides a means on a per IP address target to configure T@J. pidhis can have multiple occurrences, per policy
that is bound to an IP address or network. One default poliggtine specified, and that policy is not bound to an IP
address or network.

preprocessor stream5_tcp: \
[bind_to <ip_addr>], \
[timeout <number secs>], [policy <policy id>], \
[overlap_limit <number>], [max_window <number>], \
[require_3whs [<number secs>]], [detect_anomalies], \
[check_session_hijacking], [use_static_footprint_siz es], \
[dont_store_large packets], [dont reassemble_async], \
[max_queued_bytes <bytes>], [max_queued_segs <number se
[small_segments <number> bytes <number> [ignore_ports nu
[ports <client|server|both> <alljnumber [number]*>], \
[protocol <client|server|both> <all|service name [servi
[ignore_any_rules], [flush_factor <number segs>]

gs>], \
mber [number]¥]], \

ce name]*>], \

Option
bind _to <ip _addr>
timeout <num seconds>

Description

IP address or network for this policy. The default is set tp an
Session timeout. The default is "30”, the minimum is "1”, ahd maxi-
mum is "86400” (approximately 1 day).

42

policy <policy _id>

The Operating System policy for the target OS. The palitgan be one
of the following:

Policy Name| Operating Systems.

first Favor first overlapped segment.

last Favor first overlapped segment.

bsd FresBSD 4.x and newer, NetBSD 2.x and
newer, OpenBSD 3.x and newer

linux Linux 2.4 and newer

old-linux Linux 2.2 and earlier

windows Windows 2000, Windows XP, Windows
95/98/ME

win2003 Windows 2003 Server

vista Windows Vista

solaris Solaris 9.x and newer

hpux HPUX 11 and newer

hpux10 HPUX 10

irix IRIX 6 and newer

macos MacOS 10.3 and newer

overlap _limit <number>

Limits the number of overlapping packets per session. Tlfeudtas "0”
(unlimited), the minimum is "0”, and the maximum is "255".

max_window <number>

Maximum TCP window allowed. The default is "0” (unlimitedhe
minimum is "0”, and the maximum is "1073725440" (65535 leffiifs
14). That is the highest possible TCP window per RFCs. Thiojs
intended to prevent a DoS against Stream5 by an attackey asiabnor-
mally large window, so using a value near the maximum is diszged.

require _3whs [<number
seconds>]

Establish sessions only on completion of a SYN/SYN-ACK/A#&nhd-
shake. The default is set to off. The optional number of sds@peci-
fies a startup timeout. This allows a grace period for exgssiessions tg
be considered established during that interval immediatiér Snort is
started. The defaultis "0” (don’t consider existing semsiestablished)
the minimum is "0”, and the maximum is "86400" (approximatél
day).

detect _anomalies

Detect and alert on TCP protocol anomalies. The defaultt itosaf.

check _session _hijacking

Check for TCP session hijacking. This check validates thelaare
(MAC) address from both sides of the connect — as establishettie
3-way handshake against subsequent packets received sasien. If
an ethernet layer is not part of the protocol stack receiye8rort, there
are no checks performed. Alerts are generated (eéact _anomalies ’
option) for either the client or server when the MAC addresohe side
or the other does not match. The default is set to off.

use _static _footprint _sizes

Use static values for determining when to build a reasseintdeket to
allow for repeatable tests. This option should not be usedymstion
environments. The default is set to off.

dont _store _large _packets

Performance improvement to not queue large packets in ewdng
buffer. The default is set to off. Using this option may résalmissed
attacks.

dont _reassemble _async

Don’t queue packets for reassembly if traffic has not been 8eboth
directions. The default is set to queue packets.

max_queued _bytes <bytes>

Limit the number of bytes queued for reassembly on a given 3&Rion
to bytes. Default is "1048576” (LMB). A value of "0” means imlted,
with a non-zero minimum of "1024”, and a maximum of "10737248
(1GB). A message is written to console/syslog when thistlisiien-
forced.

43

max_queued _segs <num>

Limit the number of segments queued for reassembly on a gizn
session. The default is "2621", derived based on an aveiage§400
bytes. A value of "0” means unlimited, with a non-zero minimwf
"2", and a maximum of "1073741824" (1GB). A message is writte
console/syslog when this limit is enforced.

small _segments <number>
bytes <number> [ignore
<number(s)>]

Configure the maximum small segments queued. This featqreres
that detectanomalies be enabled. The first number is the number of
secutive segments that will trigger the detection rule. d@efault value
is "0” (disabled), with a maximum of "2048”. The second numim
the minimum bytes for a segment to be considered "small”. défault
value is "0” (disabled), with a maximum of "2048". ignapeorts is op-
tional, defines the list of ports in which will be ignored faig rule. The
number of ports can be up to "65535”". A message is written to- g
sole/syslog when this limit is enforced.

con-

(0]

ports <client|server|both>
<alljnumber(s)>

Specify the client, server, or both and list of ports in whiotperform
reassembly. This can appear more than once in a given cortfgdé-
fault settings areports client 21 23 25 42 53 80 110 111 135

136 137 139 143 445 513 514 1433 1521 2401 3306 . The mini-
mum port allowed is "1” and the maximum allowed is "65535".

protocol
<client|server|both>
<all|service name(s)>

Specify the client, server, or both and list of services incltio perform
reassembly. This can appear more than once in a given config.
default settings areports client ftp telnet smtp nameserver

dns http pop3 sunrpc dcerpc netbios-ssn imap login shell

mssql oracle cvs mysql The service names can be any of thg
used in the host attribute table (de€l2.7), including anyhefinternal
defaults (seEZZ4.3) or others specific to the network.

ignore _any _rules

Don't process any> any (ports) rules for TCP that attempt to mat
payload if there are no port specific rules for the src or daitn port.
Rules that have flow or flowbits will never be ignored. This igeafor-

mance improvement and may result in missed attacks. Usiagltes
not affect rules that look at protocol headers, only thosih wontent,
PCRE, or byte test options. The default is "off”. This optian be used
only in default policy.

flush _factor

Useful in ips mode to flush upon seeing a drop in segment stee [df
segments of non-decreasing size. The drop in size ofteadtes an end

se

of request or response.

ANOTE

If no options are specified for a given TCP policy, that is tleéadlt TCP policy. If only a bindo option is
used with no other options that TCP policy uses all of the ulefalues.

Stream5 UDP Configuration

Configuration for UDP session tracking. Since there is ngetabased binding, there should be only one occurrence

of the UDP configuration.

preprocessor stream5_udp: [timeout <number secs>], [igno

re_any_rules]

44

Option Description

timeout <num seconds> Session timeout. The default is "30”, the minimum is "1”, ahé maximum is
"86400” (approximately 1 day).
ignore _any _rules Don't process any> any (ports) rules for UDP that attempt to match payload

if there are no port specific rules for the src or destinatiort.pRules that have
flow or flowbits will never be ignored. This is a performanceimvement and
may result in missed attacks. Using this does not affectrthlat look at protoco
headers, only those with content, PCRE, or byte test optibimes default is "off".

NOTE
With the ignoreany.rules option, a UDP rule will be ignored except when therenisther port specific rule
that may be applied to the traffic. For example, if a UDP rulec#fiies destination port 53, the 'ignored’ any
-> any rule will be applied to traffic to/from port 53, but NOT toyaother source or destination port. A list
of rule SIDs affected by this option are printed at Snorgstsip.

NOTE
With the ignoreany.rules option, if a UDP rule that uses amy any ports includes either flow or flowbits
the ignoreany.rules option is effectively pointless. Because of the ptigémmpact of disabling a flowbits
rule, the ignoreany.rules option will be disabled in this case.

Stream5 ICMP Configuration

Configuration for ICMP session tracking. Since there is mgetBbased binding, there should be only one occurrence
of the ICMP configuration.

NOTE
ICMP is currently untested, in minimal code form and is NO&d for use in production networks. It is npt
turned on by default.

preprocessor stream5_icmp: [timeout <number secs>]

Option Description
timeout <num seconds> Session timeout. The default is "30”, the minimum is "1”, atheé maximum is
"86400” (approximately 1 day).

Example Configurations

1. This example configuration is the default configuratiosmort.conf and can be used for repeatable tests of
stream reassembly in readback mode.

preprocessor stream5_global: \
max_tcp 8192, track tcp yes, track_udp yes, track_icmp no

preprocessor streamb_tcp: \
policy first, use_static_footprint_sizes

preprocessor stream5_udp: \
ignore_any_rules

2. This configuration maps two network segments to diffe@®tpolicies, one for Windows and one for Linux,
with all other traffic going to the default policy of Solaris.

45

preprocessor stream5_global; track tcp yes

preprocessor stream5_tcp: bind to 192.168.1.0/24, polic y windows
preprocessor stream5_tcp: bind_to 10.1.1.0/24, policy i nux
preprocessor stream5_tcp: policy solaris

2.2.3 sfPortscan

The sfPortscan module, developed by Sourcefire, is designddtect the first phase in a network attack: Recon-
naissance. In the Reconnaissance phase, an attacker idetemmat types of network protocols or services a host
supports. This is the traditional place where a portscagstgkace. This phase assumes the attacking host has no prior
knowledge of what protocols or services are supported byattyet; otherwise, this phase would not be necessary.

As the attacker has no beforehand knowledge of its interattget, most queries sent by the attacker will be negative
(meaning that the service ports are closed). In the natulegifmate network communications, negative responses
from hosts are rare, and rarer still are multiple negatispoases within a given amount of time. Our primary objective
in detecting portscans is to detect and track these negaspenses.

One of the most common portscanning tools in use today is NiMagap encompasses many, if not all, of the current
portscanning techniques. sfPortscan was designed to bécathbtect the different types of scans Nmap can produce.

sfPortscan will currently alert for the following types ofidip scans:

e TCP Portscan
e UDP Portscan
e |P Portscan

These alerts are for oreone portscans, which are the traditional types of scans;hostescans multiple ports on
another host. Most of the port queries will be negative,esimost hosts have relatively few services available.

sfPortscan also alerts for the following types of decoy gans:

e TCP Decoy Portscan
e UDP Decoy Portscan
e |IP Decoy Portscan

Decoy portscans are much like the Nmap portscans descriima: aonly the attacker has a spoofed source address
inter-mixed with the real scanning address. This tactipfiide the true identity of the attacker.

sfPortscan alerts for the following types of distributedtpcans:

e TCP Distributed Portscan
o UDP Distributed Portscan

e |P Distributed Portscan

These are manyone portscans. Distributed portscans occur when multiptéshquery one host for open services.
This is used to evade an IDS and obfuscate command and cbostsl

ANOTE

Negative queries will be distributed among scanning hastsye track this type of scan through the scanhed
host.

sfPortscan alerts for the following types of portsweeps:

46

e TCP Portsweep
e UDP Portsweep
e |P Portsweep

e ICMP Portsweep

These alerts are for oremany portsweeps. One host scans a single port on multipte.hbsis usually occurs when
a new exploit comes out and the attacker is looking for a $ipesgrvice.

ANOTE

The characteristics of a portsweep scan may not result iy megative responses. For example, if an attagker
portsweeps a web farm for port 80, we will most likely not seegnegative responses.

sfPortscan alerts on the following filtered portscans antspeeps:

e TCP Filtered Portscan

e UDP Filtered Portscan

¢ |P Filtered Portscan

e TCP Filtered Decoy Portscan

e UDP Filtered Decoy Portscan

e |P Filtered Decoy Portscan

e TCP Filtered Portsweep

e UDP Filtered Portsweep

¢ |P Filtered Portsweep

e ICMP Filtered Portsweep

e TCP Filtered Distributed Portscan

e UDP Filtered Distributed Portscan

¢ |P Filtered Distributed Portscan
“Filtered” alerts indicate that there were no network esfd€EMP unreachables or TCP RSTSs) or responses on closed
ports have been suppressed. It's also a good indicator ahwhthe alert is just a very active legitimate host. Active

hosts, such as NATSs, can trigger these alerts because thegnd out many connection attempts within a very small
amount of time. A filtered alert may go off before responsemifthe remote hosts are received.

sfPortscan only generates one alert for each host pair istigneduring the time window (more on windows below).
On TCP scan alerts, sfPortscan will also display any opetsbat were scanned. On TCP sweep alerts however,
sfPortscan will only track open ports after the alert hastigggered. Open port events are not individual alerts, but
tags based on the original scan alert.

47

sfPortscan Configuration

Use of the Stream5 preprocessor is required for sfPort&tamam gives portscan direction in the case of connection-
less protocols like ICMP and UDP. You should enable the &trpeeprocessor in yowsnort.conf , as described in

SectiofZ.ZP.

The parameters you can use to configure the portscan modaule ar

1. proto <protocol>
Available options:

e TCP

e UDP

e IGMP

e ip _proto
e all

2. scantype <scantype>
Available options:

portscan

portsweep

decoy _portscan

distributed _portscan
o all

3. sensdevel <level>
Available options:

e low - “Low” alerts are only generated on error packets sent frioetérget host, and because of the nature
of error responses, this setting should see very few falsiiypes. However, this setting will never trigger
a Filtered Scan alert because of a lack of error responséss@tting is based on a static time window of
60 seconds, after which this window is reset.

e medium - “Medium” alerts track connection counts, and so will gexteffiltered scan alerts. This setting
may false positive on active hosts (NATSs, proxies, DNS cacht), so the user may need to deploy the
use of Ignore directives to properly tune this directive.

e high - “High” alerts continuously track hosts on a network usingrae window to evaluate portscan
statistics for that host. A "High” setting will catch somewsl scans because of the continuous monitoring,
but is very sensitive to active hosts. This most definitell require the user to tune sfPortscan.

4. watchip <ipl|ip2/cidr[[port |port2-port3]] >

Defines which IPs, networks, and specific ports on those hostatch. The list is a comma separated list of
IP addresses, IP address using CIDR notation. Optionaltys @are specified after the IP address/CIDR using a
space and can be either a single port or a range denoted bi.aBa®r networks not falling into this range are
ignored if this option is used.

5. ignore.scanners<ipl|ip2/cidr[[port |port2-port3]] >

Ignores the source of scan alerts. The parameter is the samatfas that ofvatch _ip .

6. ignorescanned<ipl|ip2/cidr[[port |port2-port3]] >
Ignores the destination of scan alerts. The parameter isatfme format as that @fatch _ip .

7. lodfile <file>

This option will output portscan events to the file specifiidfile ~ does not contain a leading slash, this file
will be placed in the Snort config dir.

48

8. include.midstream

This option will include sessions picked up in midstream lne&n5. This can lead to false alerts, especially
under heavy load with dropped packets; which is why the ops®ff by default.

9. detectack.scans

This option will include sessions picked up in midstream g $tream module, which is necessary to detect
ACK scans. However, this can lead to false alerts, espgaialier heavy load with dropped packets; which is
why the option is off by default.

10. disabled

This optional keyword is allowed with any policy to avoid gatprocessing. This option disables the preproces-
sor. When the preprocessor is disabled only the memcapoptapplied when specified with the configuration.
The other options are parsed but not used. Any valid configuranay have "disabled” added to it.

Format

preprocessor sfportscan: proto <protocols> \
scan_type <portscan|portsweep|decoy_portscan|distrib uted_portscanjall> \
sense_level <low|mediuml|high> \
watch_ip <IP or IP/CIDR> \
ignore_scanners <IP list> \
ignore_scanned <IP list> \
logfile <path and filename> \
disabled

Example

preprocessor flow: stats_interval 0 hash 2
preprocessor sfportscan:\

proto { all }\

scan_type { all } \

sense_level { low }

sfPortscan Alert Output

Unified Output In order to get all the portscan information logged with therta snort generates a pseudo-packet
and uses the payload portion to store the additional pariséarmation of priority count, connection count, IP count
port count, IP range, and port range. The characteristittseobacket are:

Src/Dst MAC Addr == MACDAD
IP Protocol == 255
IP TTL ==

Other than that, the packet looks like the IP portion of thekpathat caused the portscan alert to be generated. This
includes any IP options, etc. The payload and payload sizheopacket are equal to the length of the additional
portscan information that is logged. The size tends to beratd 00 - 200 bytes.

Open port alerts differ from the other portscan alerts, bse@pen port alerts utilize the tagged packet output system
This means that if an output system that doesn't print tagget#ets is used, then the user won’t see open port alerts.
The open port information is stored in the IP payload andaiastthe port that is open.

The sfPortscan alert output was designed to work with unfazket logging, so it is possible to extend favorite Snort
GUIs to display portscan alerts and the additional inforaomain the IP payload using the above packet characteristics

49

Log File Output Log file output is displayed in the following format, and exioled further below:

Time: 09/08-15:07:31.603880

event_id: 2

192.168.169.3 -> 192.168.169.5 (portscan) TCP Filtered Po rtscan
Priority Count: 0

Connection Count: 200

IP Count: 2

Scanner IP Range: 192.168.169.3:192.168.169.4

Port/Proto Count: 200

Port/Proto Range: 20:47557

If there are open ports on the target, one or more additiagaldd packet(s) will be appended:

Time: 09/08-15:07:31.603881

event_ref: 2

192.168.169.3 -> 192.168.169.5 (portscan) Open Port
Open Port: 38458

1. Eventid/Event_ref
These fields are used to link an alert with the correspondpeg Port tagged packet

2. Priority Count

Priority Count keeps track of bad responses (resets, unreachables). ghrer lthe priority count, the more
bad responses have been received.

3. Connection Count

Connection Count lists how many connections are active on the hosts (src Qr dehis is accurate for
connection-based protocols, and is more of an estimatetf@ra Whether or not a portscan was filtered is
determined here. High connection count and low priorityrtaumould indicate filtered (no response received
from target).

4. |IP Count

IP Count keeps track of the last IP to contact a host, andimenés the count if the next IP is different. For
one-to-one scans, this is a low humber. For active hoststimisber will be high regardless, and one-to-one
scans may appear as a distributed scan.

5. Scanned/Scanner IP Range

This field changes depending on the type of alert. Portswaep-{0-many) scans display the scanned IP range;
Portscans (one-to-one) display the scanner IP.

6. Port Count

Port Count keeps track of the last port contacted and inangsribis number when that changes. We use this
count (along with IP Count) to determine the difference le&twone-to-one portscans and one-to-one decoys.

Tuning sfPortscan

The most important aspect in detecting portscans is tutiaglétection engine for your network(s). Here are some
tuning tips:

1. Use the watchip, ignore_scanners, and ignorescanned options.

It's important to correctly set these options. Twedch _ip option is easy to understand. The analyst should set
this option to the list of CIDR blocks and IPs that they wanatch. If nowatch _ip is defined, sfPortscan will
watch all network traffic.

50

Theignore _scanners andignore _scanned options come into play in weeding out legitimate hosts that a
very active on your network. Some of the most common examgiedNAT IPs, DNS cache servers, syslog
servers, and nfs servers. sfPortscan may not generatetagaes for these types of hosts, but be aware when
first tuning sfPortscan for these IPs. Depending on the typked that the host generates, the analyst will know
which to ignore it as. If the host is generating portsweemtsighen add it to th@gnore _scanners option.

If the host is generating portscan alerts (and is the hostishHzeing scanned), add it to tlignore _scanned
option.

2. Filtered scan alerts are much more prone to false positive

When determining false positives, the alert type is veryangnt. Most of the false positives that sfPortscan
may generate are of the filtered scan alert type. So be much sogpicious of filtered portscans. Many times
this just indicates that a host was very active during the fi@riod in question. If the host continually generates
these types of alerts, add it to tiyaore _scanners list or use a lower sensitivity level.

3. Make use of the Priority Count, Connection Count, IP Count Port Count, IP Range, and Port Range to
determine false positives.

The portscan alert details are vital in determining the saffa portscan and also the confidence of the portscan.
In the future, we hope to automate much of this analysis ilgagg) a scope level and confidence level, but
for now the user must manually do this. The easiest way toriéte false positives is through simple ratio
estimations. The following is a list of ratios to estimatel &ime associated values that indicate a legitimate scan
and not a false positive.

Connection Count / IP Count: This ratio indicates an estimated average of connectiond’pEor portscans,
this ratio should be high, the higher the better. For porépgethis ratio should be low.

Port Count/IP Count: This ratio indicates an estimated average of ports condéeteer IP. For portscans, this
ratio should be high and indicates that the scanned host's pere connected to by fewer IPs. For portsweeps,
this ratio should be low, indicating that the scanning hosinected to few ports but on many hosts.

Connection Count / Port Count: This ratio indicates an estimated average of connectionpoe. For
portscans, this ratio should be low. This indicates thaheaninection was to a different port. For portsweeps,
this ratio should be high. This indicates that there wereyntamnections to the same port.

The reason tha@riority Count is not included, is because the priority count is includethi® connection
count and the above comparisons take that into considarafibe Priority Count play an important role in
tuning because the higher the priority count the more liktelya real portscan or portsweep (unless the host is
firewalled).

4. If all else fails, lower the sensitivity level.

If none of these other tuning techniques work or the analyssd't have the time for tuning, lower the sensitivity
level. You get the best protection the higher the sengttigitel, but it's also important that the portscan detection
engine generate alerts that the analyst will find inforngativhe low sensitivity level only generates alerts based
on error responses. These responses indicate a portscémeaadrts generated by the low sensitivity level are
highly accurate and require the least tuning. The low seitgitevel does not catch filtered scans; since these
are more prone to false positives.

2.2.4 RPC Decode

The rpcdecode preprocessor normalizes RPC multiple fragmenteddsinto a single un-fragmented record. It does
this by normalizing the packet into the packet buffer. leam5 is enabled, it will only process client-side traffic. By
default, it runs against traffic on ports 111 and 32771.

Format

preprocessor rpc_decode: \
<ports> [alert_fragments] \
[no_alert_multiple_requests] \
[no_alert_large_fragments] \
[no_alert_incomplete]

51

Option Description

alert _fragments Alert on any fragmented RPC record.

no_alert _multiple _requests Don't alert when there are multiple records in one packet.

no_alert _large _fragments Don't alert when the sum of fragmented records exceeds otiepa
no_alert _incomplete Don’t alert when a single fragment record exceeds the sibamefacket.

2.2.5 Performance Monitor

This preprocessor measures Snort's real-time and thearetaximum performance. Whenever this preprocessor is
turned on, it should have an output mode enabled, eithers@eiwhich prints statistics to the console window or
“file” with a file name, where statistics get printed to the@fied file name. By default, Snort’s real-time statistics
are processed. This includes:

e Time Stamp

e Drop Rate

e Mbits/Sec (wire) [duplicated below for easy comparisortwather rates]

e Alerts/Sec

e K-Pkts/Sec (wire) [duplicated below for easy comparisothwiher rates]

e Avg Bytes/Pkt (wire) [duplicated below for easy comparisdgth other rates]

e Pat-Matched [percent of data received that Snort procésgedtern matching]

e Syns/Sec

e SynAcks/Sec

e New Sessions Cached/Sec

e Sessions Del fr Cache/Sec

e Current Cached Sessions

e Max Cached Sessions

e Stream Flushes/Sec

e Stream Session Cache Faults

e Stream Session Cache Timeouts

e New Frag Trackers/Sec

e Frag-Completes/Sec

e Frag-Inserts/Sec

e Frag-Deletes/Sec

e Frag-Auto Deletes/Sec [memory DoS protection]

e Frag-Flushes/Sec

e Frag-Current [number of current Frag Trackers]

e Frag-Max [max number of Frag Trackers at any time]

e Frag-Timeouts

e Frag-Faults

52

Number of CPUs [*** Only if compiled with LINUXSMP ***, the next three appear for each CPU]
CPU usage (user)

CPU usage (sys)

CPU usage (ldle)

Mbits/Sec (wire) [average mbits of total traffic]

Mbits/Sec (ipfrag) [average mbits of IP fragmented traffic]
Mbits/Sec (ipreass) [average mbits Snort injects afteed3sembly]
Mbits/Sec (tcprebuilt) [average mbits Snort injects alt€P reassembly]
Mbits/Sec (applayer) [average mbits seen by rules and pobtiecoders]
Avg Bytes/Pkt (wire)

Avg Bytes/Pkt (ipfrag)

Avg Bytes/Pkt (ipreass)

Avg Bytes/Pkt (tcprebuilt)

Avg Bytes/Pkt (applayer)

K-Pkts/Sec (wire)

K-Pkts/Sec (ipfrag)

K-Pkts/Sec (ipreass)

K-Pkts/Sec (tcprebuilt)

K-Pkts/Sec (applayer)

Total Packets Received

Total Packets Dropped (not processed)

Total Packets Blocked (inline)

Percentage of Packets Dropped

Total Filtered TCP Packets

Total Filtered UDP Packets

Midstream TCP Sessions/Sec

Closed TCP Sessions/Sec

Pruned TCP Sessions/Sec

TimedOut TCP Sessions/Sec

Dropped Async TCP Sessions/Sec

TCP Sessions Initializing

TCP Sessions Established

TCP Sessions Closing

Max TCP Sessions (interval)

New Cached UDP Sessions/Sec

53

e Cached UDP Ssns Del/Sec

e Current Cached UDP Sessions

e Max Cached UDP Sessions

e Current Attribute Table Hosts (Target Based)
o Attribute Table Reloads (Target Based)
e Mbits/Sec (Snort)

e Mbits/Sec (sniffing)

e Mbits/Sec (combined)

e uSeconds/Pkt (Snort)

e uSeconds/Pkt (sniffing)

e uSeconds/Pkt (combined)

e KPkts/Sec (Snort)

e KPkts/Sec (sniffing)

e KPkts/Sec (combined)

The following options can be used with the performance noonit

e flow - Prints out statistics about the type of traffic and protalistributions that Snort is seeing. This option
can produce large amounts of output.

e events - Turns on event reporting. This prints out statistics asiortumber of rules that were evaluated and
didn’t match fon-qualified evenjws. the number of rules that were evaluated and mataipealified evenis
A high non-qualified evertb qualified eventatio can indicate there are many rules with either mininoatent
or no content that are being evaluated without success.agt@attern matcher is used to select a set of rules for
evaluation based on the longesttent or acontent modified with thefast _pattern rule option in a rule.
Rules with short, generic contents are more likely to becsetefor evaluation than those with longer, more
unique contents. Rules withocdntent are not filtered via the fast pattern matcher and are alwagisiated,
so if possible, adding eontent rule option to those rules can decrease the number of tinegsribed to be
evaluated and improve performance.

e max- Turns on the theoretical maximum performance that Snécutates given the processor speed and current
performance. This is only valid for uniprocessor machiisgs;e many operating systems don’t keep accurate
kernel statistics for multiple CPUs.

e console - Prints statistics at the console.

e file - Prints statistics in a comma-delimited format to the filattis specified. Not all statistics are output to
this file. You may also ussnortfile which will output into your defined Snort log directory. Batifithese
directives can be overridden on the command line with-Zher --perfmon-file options. At startup, Snort
will log a distinctive line to this file with a timestamp to ataders to easily identify gaps in the stats caused by
Snort not running.

e pktcnt - Adjusts the number of packets to process before checkinthéotime sample. This boosts perfor-
mance, since checking the time sample reduces Snort'srpafe. By default, this is 10000.

e time - Represents the number of seconds between intervals.

e accumulate orreset - Defines which type of drop statistics are kept by the opegasiystem. By default,
reset is used.

e atexitonly - Dump stats for entire life of Snort.

54

e maxfile _size - Defines the maximum size of the comma-delimited file. Befbeefile exceeds this size, it
will be rolled into a new date stamped file of the format YYYYMADD, followed by YYYY-MM-DD.x, where
x will be incremented each time the comma delimited file isebbver. The minimum is 4096 bytes and the
maximum is 2147483648 bytes (2GB). The default is the santieeamiaximum.

e flow-ip - Collects IP traffic distribution statistics based on hasts@ For each pair of hosts for which IP traffic
has been seen, the following statistics are collected ftr Bivections (Ato B and B to A):
— TCP Packets
— TCP Traffic in Bytes
— TCP Sessions Established
— TCP Sessions Closed
— UDP Packets
— UDP Traffic in Bytes
— UDP Sessions Created
— Other IP Packets
— Other IP Traffic in Bytes

These statistics are printed and reset at the end of eaclidhte

o flow-ip-file - Prints the flow IP statistics in a comma-delimited formattte file that is specified. All of the
statistics mentioned above, as well as the IP addresses bb#t pairs in human-readable format, are included.

o flow-ip-memcap - Sets the memory cap on the hash table used to store IP ttafiigtiss for host pairs. Once
the cap has been reached, the table will start to prune thistisfor the least recently seen host pairs to free
memory. This value is in bytes and the default value is 5202480MB).

Examples

preprocessor perfmonitor: \
time 30 events flow file stats.profile max console pktcnt 10 000

preprocessor perfmonitor: \
time 300 file /var/tmp/snortstat pktcnt 10000

preprocessor perfmonitor: \
time 30 flow-ip flow-ip-file flow-ip-stats.csv pktcnt 100 0

2.2.6 HTTP Inspect

HTTP Inspect is a generic HTTP decoder for user applicati@digsen a data buffer, HTTP Inspect will decode the
buffer, find HTTP fields, and normalize the fields. HTTP Ingpearks on both client requests and server responses.

The current version of HTTP Inspect only handles statelessgssing. This means that HTTP Inspect looks for HTTP
fields on a packet-by-packet basis, and will be fooled if péelare not reassembled. This works fine when there is
another module handling the reassembly, but there arealiimits in analyzing the protocol. Future versions will have
a stateful processing mode which will hook into various seasbly modules.

HTTP Inspect has a very “rich” user configuration. Users aamfigure individual HTTP servers with a variety of
options, which should allow the user to emulate any type df server. Within HTTP Inspect, there are two areas of
configuration: global and server.

Global Configuration

The global configuration deals with configuration optioret tthetermine the global functioning of HTTP Inspect. The
following example gives the generic global configuratiomiat:

55

Format

preprocessor http_inspect: \

global \

iis_unicode_map <map_filename> \
codemap <integer> \
[detect_anomalous_servers] \
[proxy_alert] \

[max_gzip_mem <num>] \
[compress_depth <num>] [decompress_depth <num>] \
disabled

You can only have a single global configuration, you'll gearor if you try otherwise.

Configuration

1.

iis _unicode _map <map.filename > [codemap <integer >]

This is the globaiis _unicode _mapfile. Theiis _unicode _mapis a required configuration parameter. The map
file can reside in the same directorysasrt.conf or be specified via a fully-qualified path to the map file.

Theiis _unicode _mapfile is a Unicode codepoint map which tells HTTP Inspect wiiodepage to use when
decoding Unicode characters. For US servers, the codenapadly 1252.

A Microsoft US Unicode codepoint map is provided in the Srsoirceetc directory by default. It is called
unicode.map and should be used if no other codepoint map is availableoitsupplied with Snortto generate
custom Unicodeaps--ms _unicode _generator.c , which is available éittp://www.snort.org/dl/contrib/

ANOTE

Remember that this configuration is for the global 1IS Uniemdap, individual servers can reference their
own IS Unicode map.

detect _anomalous _servers

This global configuration option enables generic HTTP sanadfic inspection on non-HTTP configured ports,
and alerts if HTTP traffic is seen. Don't turn this on if you domave a default server configuration that
encompasses all of the HTTP server ports that your userstmigiess. In the future, we want to limit this to
specific networks so it's more useful, but for right now, tinispects all network traffic. This option is turned off
by default.

proxy _alert

This enables global alerting on HTTP server proxy usage. @yiguring HTTP Inspect servers and enabling
allow _proxy _use, you will only receive proxy use alerts for web users thahdnesing the configured proxies
or are using a rogue proxy server.

Please note that if users aren’t required to configure wekypee, then you may get a lot of proxy alerts. So,
please only use this feature with traditional proxy envinemts. Blind firewall proxies don't count.

compress _depth <integer > This option specifies the maximum amount of packet payloatetmmpress.
This value can be set from 1 to 65535. The default for thisoopis 1460.

ANOTE

Please note, in case of multiple policies, the value spekcifiethe default policy is used and this value
overwrites the values specified in the other policies. Ireadsnlimited _decompress this should be set tg
its max value. This value should be specified in the defaditpeven when the HTTP inspect is turned off
using thedisabled keyword.

56

http://www.snort.org/dl/contrib/

5. decompress _depth <integer > This option specifies the maximum amount of decompressedtdatbtain
from the compressed packet payload. This value can be setlfto 65535. The default for this option is 2920.

ANOTE

Please note, in case of multiple policies, the value spekcifiethe default policy is used and this value
overwrites the values specified in the other policies. Ireadsnlimited _decompress this should be set tg
its max value. This value should be specified in the defaditypeven when the HTTP inspect is turned off
using thedisabled keyword.

6. max.gzip -mem

This option determines (in bytes) the maximum amount of ntgrttee HTTP Inspect preprocessor will use for
decompression. This value can be set from 3276 bytes to 100KiB option along witltompress _depth and
decompress _depth determines the gzip sessions that will be decompressed/ajieen instant. The default
value for this option is 838860.

ANOTE

This value should be specified in the default policy even wienHTTP inspect is turned off using the
disabled keyword. It is suggested to set this value such that the migixsgssion calculated as follows is fat
least 1.

max gzip session max gzip _menv(decompress _depth + compress _depth)

7. disabled
This optional keyword is allowed with any policy to avoid patprocessing. This option disables the preproces-

sor. When the preprocessor is disabled only the "maip_.mem”, "compressiepth” and "decompressepth”
options are applied when specified with the configuratiorhe®bptions are parsed but not used. Any valid
configuration may have "disabled” added to it.

Example Global Configuration

preprocessor http_inspect; \
global iis_unicode_map unicode.map 1252

Server Configuration

There are two types of server configurations: default andaddress.

Default This configuration supplies the default server configurdfiim any server that is not individually configured.
Most of your web servers will most likely end up using the détfaonfiguration.

Example Default Configuration

preprocessor http_inspect_server; \
server default profile all ports { 80 }

Configuration by IP Address This format is very similar to “default”, the only differeadeing that specific IPs
can be configured.

57

Example IP Configuration

preprocessor http_inspect_server: \
server 10.1.1.1 profile all ports { 80 }

Configuration by Multiple IP Addresses This format is very similar to “Configuration by IP Addres#tie only
difference being that multiple IPs can be specified via a spaparated list. There is a limit of 40 IP addresses or
CIDR notations pehttp _inspect _server line.

Example Multiple IP Configuration

preprocessor http_inspect_server: \
server { 10.1.1.1 10.2.2.0/24 } profile all ports { 80 }

Server Configuration Options

Important: Some configuration options have an argumented’‘gr ‘no’. This argument specifies whether the user
wants the configuration option to generate an HTTP Inspect at not. The ‘yes/no’ argument does not specify
whether the configuration option itself is on or off, only #ilerting functionality. In other words, whether set to ‘yes
or 'no’, HTTP normalization will still occur, and rules basen HTTP traffic will still trigger.

1. profile <all |apache Jis |iis5 _Oliis4 _0>
Users can configure HTTP Inspect by using pre-defined HTTW®eserofiles. Profiles allow the user to easily
configure the preprocessor for a certain type of server,igutat required for proper operation.

There are five profiles available: all, apache, iis, ils%nd iis40.

1-A. all
Theall profile is meant to normalize the URI using most of the comnniwks available. We alert on the
more serious forms of evasions. This is a great profile foeaetg all types of attacks, regardless of the
HTTP serverprofile all sets the configuration options described in Tablk 2.3.

1-B. apache
Theapache profile is used for Apache web servers. This differs fromiihe profile by only accepting
UTF-8 standard Unicode encoding and not accepting badiedaas legitimate slashes, like IIS does.
Apache also accepts tabs as whitespawefile apache sets the configuration options described in

TableZ34.

1-C. iis
Theiis profile mimics IIS servers. So that means we use |IS Unicodieiraps for each server, %u
encoding, bare-byte encoding, double decoding, backetasc. profile iis sets the configuration

options described in Table2.5.

1-D. iis4 0, iis5 -0
In IS 4.0 and 1IS 5.0, there was a double decoding vulnétgbiThese two profiles are identical is ,
except they will alert by default if a URL has a double encgdibouble decode is not supported in IS
5.1 and beyond, so it's disabled by default.

1-E. default, no profile
The default options used by HTTP Inspect do not use a profdeaasm described in Table2.6.
Profiles must be specified as the first server option and cérenmambined with any other options except:

e ports

e iis _unicode _map
allow _proxy _use

e server _flow _depth
client _flow _depth

58

. ports

Table 2.3: Options for the “all” Profile

Option Setting
serverflow_depth 300
client flow_depth 300
postdepth 0

chunk encoding

alert on chunks larger than 500000 bytes

iis_unicodemap

codepoint map in the global configuration

ASCII decoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
apache whitespace on, alert off
double decoding on, alerton
%u decoding on, alerton
bare byte decoding on, alerton
iis unicode codepoints| on, alert on
iis backslash on, alert off
iis delimiter on, alert off
webroot on, alerton
nonstrict URL parsing| on
tab.uri_delimiter is set

max headetdength

0, header length not checked

max_headers

0, number of headers not checked

post _depth

no_alerts

inspect _uri _only
oversize _dir _length
normalize _headers
normalize _cookies
normalize _utf
max_header _length
max_headers

extended _response _inspection

enable _cookie

inspect _gzip
unlimited _decompress
enable _xff

http _methods

These options must be specified after fildile

Example

preprocessor http_inspect_server: \
server 1.1.1.1 profile all ports { 80 3128 }

{<port > [<port ><...>|}

option.

This is how the user configures which ports to decode on theRH5€Fver. However, HTTPS traffic is encrypted
and cannot be decoded with HTTP Inspect. To ignore HTTP8drake the SSL preprocessor.

. iis _unicode _map <map.filename > codemap <integer

>

The IIS Unicode map is generated by the programumigodegenerator.c. This program is located on the
Snort.org web site éittp:/iwww.snort.org/dl/contrio/

59

directory. Executing this program generates a

http://www.snort.org/dl/contrib/

Table 2.4: Options for thepache Profile

Option Setting

serverflow_depth 300

client flow_depth 300

postdepth 0

chunk encoding alert on chunks larger than 500000 bytes
ASCII decoding on, alert off

multiple slash on, alert off

directory normalization on, alert off

webroot on, alerton

apache whitespace on, alerton

utf_8 encoding on, alert off

non.strict url parsing | on

tab uri_delimiter is set

max_headerdength 0, header length not checked

max headers 0, number of headers not checked

Unicode map for the system that it was run on. So, to get theifspe&nicode mappings for an 1S web server,
you run this program on that server and use that Unicode mégisiconfiguration.

When using this option, the user needs to specify the filedbatains the 11S Unicode map and also specify
the Unicode map to use. For US servers, this is usually 1262tH& msunicodegenerator program tells you
which codemap to use for you server; it's the ANSI code pagel. ¢an select the correct code page by looking
at the available code pages that the mmicodegenerator outputs.

. extended _response _inspection This enables the extended HTTP response inspection. Theldbftp re-
sponse inspection does not inspect the various fields of aPHESponse. By turning this option the HTTP
response will be thoroughly inspected. The different fi@fla HTTP response such as status code, status
message, headers, cookie (when enablekie is configured) and body are extracted and saved irfferbu
Different rule options are provided to inspect these bsffer

ANOTE

When this option is turned on, if the HTTP response packetahlasdy then any content pattern matches
(without http modifiers) will search the response body ((aepressed in case of gzip) and not the entire
packet payload. To search for patterns in the header of #popnse, one should use the http modifiers with
content such asttp _header , http _stat _code, http _stat _msgandhttp _cookie .

. enable _cookie This options turnson the cookie extraction from HTTP red¢miasd HTTP response. By default
the cookie inspection and extraction will be turned off. Tloekie header line is extracted and stored in HTTP
Cookie buffer for HTTP requests ars#t-Cookie is extracted and stored in HTTP Cookie buffer for HTTP
responses. In both cases the header name is also storedndtionige cookie.

. inspect _gzip This option specifies the HTTP inspect module to uncomphessampressed data(gzip/deflate)
in HTTP response. You should select the config option "extelndsponsénspection” before configuring this
option. Decompression is done across packets. So the deessign will end when either the 'compresspth’

or 'decompresslepth’ is reached or when the compressed data ends. Wheo@essed data is spanned
across multiple packets, the state of the last decompressaa@t is used to decompressed the data of the next
packet. Butthe decompressed data are individually inspeéite. the decompressed data from different packets
are not combined while inspecting). Also the amount of dgu@ssed data that will be inspected depends on
the 'serverflow_depth’ configured.

ANOTE

‘ To enable compression of HTTP server response, Snort sheudnfigured with the —enable-zlib flag.

60

7.

Table 2.5: Options for thiis Profile

Option Setting
serverflow_depth 300
client flow_depth 300
postdepth -1

chunk encoding

alert on chunks larger than 500000 bytes

iis_unicodemap

codepoint map in the global configuration

ASCII decoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
webroot on, alerton
double decoding on, alerton
%u decoding on, alerton
bare byte decoding on, alerton
iis unicode codepoints| on, alert on
iis backslash on, alert off
iis delimiter on, alerton

apache whitespace on, alerton

nonstrict URL parsing| on

max_headerdength 0, header length not checked

max headers 0, number of headers not checked

unlimited _decompress This option enables the user to decompress unlimited gz#(daross multiple pack-
ets).Decompression will stop when the compressed datagemwdsen a out of sequence packet is received. To
ensure unlimited decompression, user should set the 'cesagdepth’ and 'decompresgepth’ to its maximum
values in the default policy. The decompression in a singteket is still limited by the 'compresgepth’ and
'decompressiepth’.

enable _xff

This option enables Snort to parse and log the original tiRpresent in the X-Forwarded-For or True-Client-
IP HTTP request headers along with the generated eventsXHRETue-Client-IP Original client IP address is
logged only with unified2 output and is not logged with coreseA cmg) output.

ANOTE

The original client IP from XFF/True-Client-1P in unified®@ds can be viewed using the tool u2spewfpo.
This tool is present in the tools/u2spewfoo directory ofrésource tree.

server _flow _depth <integer >

This specifies the amount of server response payload todhspé¢henextended _response _inspection is
turned on, it is applied to the HTTP response body (decorspredata wheinspect _gzip is turned on)
and not the HTTP headers. Whextended _response _inspection is turned off theserver _flow _depth is
applied to the entire HTTP response (including headers)lik&Jalient _flow _depth this option is applied
per TCP session. This option can be used to balance the nEHAS performance and level of inspection of
HTTP server response data. Snort rules are targeted at HIfVeérgsesponse traffic and when used with a small
flow_depth value may cause false negatives. Most of these rubpst ®ither the HTTP header, or the content
that is likely to be in the first hundred or so bytes of non-legathta. Headers are usually under 300 bytes long,
but your mileage may vary. Itis suggested to setstireer _flow _depth to its maximum value.

This value can be set from -1 to 65535. A value of -1 causest&nignore all server side traffic for ports defined
inports whenextended _response _inspection is turned off. When thextended _response _inspection is
turned on, value of -1 causes Snort to ignore the HTTP regdoody data and not the HTTP headers. Inversely,
a value of 0 causes Snort to inspect all HTTP server payloafised in "ports” (note that this will likely
slow down IDS performance). Values above 0 tell Snort the bemof bytes to inspect of the server response

61

10.

11.

Table 2.6: Default HTTP Inspect Options

Option Setting

port 80

serverflow_depth 300

client flow_depth 300

postdepth -1

chunk encoding alert on chunks larger than 500000 bytes
ASCII decoding on, alert off

utf_8 encoding on, alert off

multiple slash on, alert off

directory normalization on, alert off

webroot on, alerton

iis backslash on, alert off

apache whitespace on, alert off

iis delimiter on, alert off

nonstrict URL parsing| on

max headetdength 0, header length not checked

max headers 0, number of headers not checked

(excluding the HTTP headers whextended _response _inspection is turned on) in a given HTTP session.
Only packets payloads starting with '"HTTP’ will be considdras the first packet of a server response. If less
than flowdepth bytes are in the payload of the HTTP response packetgiven session, the entire payload
will be inspected. If more than flowlepth bytes are in the payload of the HTTP response packetséssion
only flow_depth bytes of the payload will be inspected for that sesdiaries that are meant to inspect data in
the payload of the HTTP response packets in a session bep@3® ®ytes will be ineffective unless fladepth

is set to 0. The default value feerver _flow _depth is 300. Note that the 65535 byte maximum flolepth
applies to stream reassembled packets as well. It is sweghsset theerver _flow _depth to its maximum
value.

ANOTE

‘ server _flow _depth isthe same as the ofdw _depth option, which will be deprecated in a future relea#e.

client _flow _depth <integer >

This specifies the amount of raw client request payload feeiats This value can be set from -1 to 1460. Unlike
server _flow _depth this value is applied to the first packet of the HTTP requess ot a session based flow

depth. It has a default value of 300. It primarily eliminafsort from inspecting larger HTTP Cookies that
appear at the end of many client request Headers.

A value of -1 causes Snort to ignore all client side traffic forts defined in "ports.” Inversely, a value of 0
causes Snort to inspect all HTTP client side traffic defin€ghbarts” (note that this will likely slow down IDS
performance). Values above 0 tell Snort the number of bytésspect in the first packet of the client request.
If less than flowdepth bytes are in the TCP payload (HTTP request) of the farskex, the entire payload will
be inspected. If more than fladepth bytes are in the payload of the first packet only fitpth bytes of the
payload will be inspected. Rules that are meant to inspdet idathe payload of the first packet of a client
request beyond 1460 bytes will be ineffective unless fttepth is set to 0. Note that the 1460 byte maximum
flow_depth applies to stream reassembled packets as well. Ijgested to set theient _flow _depth to its
maximum value.

post _depth <integer >

This specifies the amount of data to inspect in a client possage. The value can be set from -1 to 65495. The
default value is -1. A value of -1 causes Snort to ignore @ldhta in the post message. Inversely, a value of 0
causes Snort to inspect all the client post message. Thisases the performance by inspecting only specified
bytes in the post message.

62

12.

13.

14.

15.

16.

17.

18.

19.

ascii <yes [no>

Theasci decode option tells us whether to decode encoded ASCII chdes %2f =/, %2e = ., etc. Itis
normal to see ASCII encoding usage in URLS, so it is recomrmeétitat you disable HTTP Inspect alerting for
this option.

extended _ascii _uri

This option enables the support for extended ASCII codeBerHTTP request URI. This option is turned off
by default and is not supported with any of the profiles.

utf _8 <yes|no>

Theut-8 decode option tells HTTP Inspect to decode standard UTFi8dde sequences that are in the URI.
This abides by the Unicode standard and only uses % encodparhe uses this standard, so for any Apache
servers, make sure you have this option turned on. As fatirdgyou may be interested in knowing when you
have a UTF-8 encoded URI, but this will be prone to false pastas legitimate web clients use this type of
encoding. Whentf _8 is enabled, ASCII decoding is also enabled to enforce cbfuectioning.

u-encode <yes |no>

This option emulates the 1IS %u encoding scheme. How the %oding scheme works is as follows: the
encoding scheme is started by a %u followed by 4 charactlkes¥duxxxx. The xxxx is a hex-encoded value
that correlates to an IIS Unicode codepoint. This value castrdefinitely be ASCII. An ASCII character is
encoded like %u002f = /, %u002e = ., etc. If naiisicodemap is specified before or after this option, the
default codemap is used.

You should alert on %u encodings, because we are not awany édgitimate clients that use this encoding. So
it is most likely someone trying to be covert.

bare _byte <yes |no>

Bare byte encoding is an IIS trick that uses non-ASCII charaas valid values when decoding UTF-8 values.
This is not in the HTTP standard, as all non-ASCII values haviee encoded with a %. Bare byte encoding
allows the user to emulate an IIS server and interpret nandstrd encodings correctly.

The alert on this decoding should be enabled, because theredegitimate clients that encode UTF-8 this
way since it is non-standard.

base36 <yes |no>
This is an option to decode base36 encoded chars. This dpti@ased on info from:
http://www.yK.rim.or.|p/_Shikap/patch/spp_http_deco de.patch

If %u encoding is enabled, this option will not work. You hawauise thérase36 option with theutf _8 option.
Don't use the %u option, because base36 won't work. WiaseB6 is enabled, ASCII encoding is also enabled
to enforce correct behavior.

iis _unicode <yes |no>

Theiis _unicode option turns on the Unicode codepoint mapping. If there ifisianicodemap option spec-
ified with the server configis _unicode uses the default codemap. Tlge _unicode option handles the
mapping of non-ASCII codepoints that the IIS server acceptsdecodes normal UTF-8 requests.

You should alert on thiés _unicode option , because it is seen mainly in attacks and evasion attemgtenW
iis _unicode is enabled, ASCIl and UTF-8 decoding are also enabled taremfmrrect decoding. To alert on
UTF-8 decoding, you must enable also enaltfie.8 yes .

double _decode <yes |no>

Thedouble _decode option is once again 11S-specific and emulates IS functipnadow this works is that 11S
does two passes through the request URI, doing decodeshiroeac In the first pass, it seems that all types of
iis encoding is done: utf-8 unicode, ASCII, bare byte, and %auhe second pass, the following encodings are
done: ASCII, bare byte, and %u. We leave out utf-8 becausek tiow this works is that the % encoded utf-8
is decoded to the Unicode byte in the first pass, and then UiBFd8coded in the second stage. Anyway, this
is really complex and adds tons of different encodings far omaracter. Whedouble _decode is enabled, so
ASCIl is also enabled to enforce correct decoding.

63

http://www.yk.rim.or.jp/~shikap/patch/spp_http_decode.patch

20.

21.

22.

23.

24,

25.

26.

27.

non_rfc _char {<byte > [<byte .. >]}

This option lets users receive an alert if certain non-RF&<€lare used in a request URI. For instance, a user
may not want to see null bytes in the request URI and we cahafhethat. Please use this option with care,
because you could configure it to say, alert on all */’ or sdrmgf like that. It's flexible, so be careful.

multi _slash <yes |no>

This option normalizes multiple slashes in a row, so somegthke: “foo/////////bar” get normalized to “foo/bar.”

If you want an alert when multiple slashes are seen, thengumefivith ayes ; otherwise, useo.

iis _backslash <yes|no>

Normalizes backslashes to slashes. This is again an IISationul So a request URI of “/fodar” gets normal-
ized to “/foo/bar.”

directory <yes |no>

This option normalizes directory traversals and selfyesiéal directories.

The directory:

[foolfake_dir/../bar

gets normalized to:
[foolbar

The directory:
ffool./oar

gets normalized to:
[foo/bar

If you want to configure an alert, specijgs, otherwise, specifyo. This alert may give false positives, since

some web sites refer to files using directory traversals.

apache _whitespace <yes |[no>

This option deals with the non-RFC standard of using tab fepace delimiter. Apache uses this, so if the
emulated web server is Apache, enable this option. Alertdhiznoption may be interesting, but may also be
false positive prone.

iis _delimiter <yes [no>

This started out being 11S-specific, but Apache takes thisstandard delimiter was well. Since this is common,
we always take this as standard since the most popular weersexccept it. But you can still get an alert on

this option.

chunk _length <non-zero positive integer >

This option is an anomaly detector for abnormally large é&hsines. This picks up the Apache chunk encoding
exploits, and may also alert on HTTP tunneling that uses kleacoding.

no_pipeline _req

This option turns HTTP pipeline decoding off, and is a perfance enhancement if needed. By default, pipeline
requests are inspected for attacks, but when this optionabled, pipeline requests are not decoded and ana-
lyzed per HTTP protocol field. It is only inspected with thengec pattern matching.

64

28.

29.

30.

31.

32.

33.

34.

35.

non _strict

This option turns on non-strict URI parsing for the brokenyviria which Apache servers will decode a URI.
Only use this option on servers that will accept URIs liketfiget /index.html alsjdfk alsj Ij aj la jsj\s1”. The
non.strict option assumes the URI is between the first and sequammkseven if there is no valid HTTP identifier
after the second space.

allow _proxy _use

By specifying this keyword, the user is allowing proxy usetbis server. This means that no alert will be
generated if theroxy _alert global keyword has been used. If the proadgert keyword is not enabled, then
this option does nothing. Thalow _proxy _use keyword is just a way to suppress unauthorized proxy use for
an authorized server.

no_alerts

This option turns off all alerts that are generated by the ATAspect preprocessor module. This has no effect
on HTTP rules in the rule set. No argument is specified.

oversize _dir _length <non-zero positive integer >

This option takes a non-zero positive integer as an argumiér argument specifies the max char directory
length for URL directory. If a url directory is larger thanishargument size, an alert is generated. A good
argument value is 300 characters. This should limit thedsterIDS evasion type attacks, like whisker -i 4.

inspect _uri _only

This is a performance optimization. When enabled, only tRe¢ pbrtion of HTTP requests will be inspected
for attacks. As this field usually contains 90-95% of the wihcks, you'll catch most of the attacks. So if
you need extra performance, enable this optimization.irttjsortant to note that if this option is used without
anyuricontent rules, then no inspection will take place. This is obviougsithe URI is only inspected with
uricontent rules, and if there are none available, then there is nothiivgspect.

For example, if we have the following rule set:

alert tcp any any -> any 80 (msg:"content"; content: "foo";)
and the we inspect the following URI:

get /foo.htm http/1.0\r\n\r\n

No alert will be generated whemspect _uri _only is enabled. Thaspect _uri _only configuration turns off
all forms of detection excepticontent inspection.

max_header _length <positive integer up to 65535 >

This option takes an integer as an argument. The integeeisniximum length allowed for an HTTP client
request header field. Requests that exceed this lengthavileca "Long Header” alert. This alert is off by
default. To enable, specify an integer argument to ineadedength of 1 to 65535. Specifying a value of 0 is
treated as disabling the alert.

webroot <yes |no>

This option generates an alert when a directory traverasktses past the web server root directory. This
generates much fewer false positives than the directoiipmpbecause it doesn'’t alert on directory traversals
that stay within the web server directory structure. It callgrts when the directory traversals go past the web
server root directory, which is associated with certain aghcks.

tab _uri _delimiter

This option turns on the use of the tab character (0x09) adimitkr for a URI. Apache accepts tab as a
delimiter; IIS does not. For IS, a tab in the URI should bateel as any other character. Whether this option is
on or not, a tab is treated as whitespace if a space char@g)(precedes it. No argument is specified.

65

36.

37.

38.

39.

40.

normalize _headers

This option turns on normalization for HTTP Header Fieldst,including Cookies (using the same configuration
parameters as the URI normalization (ie, multi-slash,ading, etc.). It is useful for normalizing Referrer URIs
that may appear in the HTTP Header.

normalize _cookies

This option turns on normalization for HTTP Cookie Fieldsifig the same configuration parameters as the
URI normalization (ie, multi-slash, directory, etc.). $tuseful for normalizing data in HTTP Cookies that may
be encoded.

normalize _utf

This option turns on normalization of HTTP response bodiksne the Content-Type header lists the character
set as "utf-16le”, "utf-16be”, "utf-32le”, or "utf-32be”HTTP Inspect will attempt to normalize these back into
8-bit encoding, generating an alert if the extra bytes arezero.

max_headers <positive integer up to 1024 >

This option takes an integer as an argument. The integee im#ximum number of HTTP client request header
fields. Requests that contain more HTTP Headers than thig veill cause a "Max Header” alert. The alert is
off by default. To enable, specify an integer argument to fneaders of 1 to 1024. Specifying a value of 0 is
treated as disabling the alert.

http _methods {cmdcmd} This specifies additional HTTP Request Methods outside a$etchecked by
default within the preprocessor (GET and POST). The lisukhbe enclosed within braces and delimited by
spaces, tabs, line feed or carriage return. The config gpti@tes and methods also needs to be separated by
braces.

http_methods { PUT CONNECT }

ANOTE

‘ Please note the maximum length for a method name is 7

Examples

preprocessor http_inspect_server; \
server 10.1.1.1 \
ports { 80 3128 8080 } \
server_flow_depth 0 \
ascii no \
double_decode yes \
non_rfc_char { 0x00 } \
chunk_length 500000 \
non_strict \
no_alerts

preprocessor http_inspect_server; \
server default \
ports { 80 3128 } \
non_strict \
non_rfc_char { Ox00 } \
server_flow_depth 300 \
apache_whitespace yes \
directory no \
iis_backslash no \
u_encode yes \

66

ascii no \
chunk_length 500000 \
bare_byte yes \
double_decode yes \
iis_unicode yes \
iis_delimiter yes \
multi_slash no

preprocessor http_inspect_server: \
server default \
profile all \
ports { 80 8080 }

2.2.7 SMTP Preprocessor

The SMTP preprocessor is an SMTP decoder for user applisat®iven a data buffer, SMTP will decode the buffer
and find SMTP commands and responses. It will also mark thevaonmd, data header data body sections, and TLS
data.

SMTP handles stateless and stateful processing. It saateststtween individual packets. However maintaining
correct state is dependent on the reassembly of the clidgaidithe stream (ie, a loss of coherent stream data results
in a loss of state).

Configuration

SMTP has the usual configuration items, suclpa@s andinspection _type . Also, SMTP command lines can be
normalized to remove extraneous spaces. TLS-encryptéit tcan be ignored, which improves performance. In
addition, regular mail data can be ignored for an additipeaformance boost. Since so few (none in the current snort
rule set) exploits are against mail data, this is relatigalfe to do and can improve the performance of data inspection

The configuration options are described below:

1. ports { <port> [<port>] ... }
This specifies on what ports to check for SMTP data. Typicahis will include 25 and possibly 465, for
encrypted SMTP.

2. inspection _type <stateful | stateless>
Indicate whether to operate in stateful or stateless mode.

3. normalize <all | none | cmds>

This turns on normalization. Normalization checks for mihv@n one space character after a command. Space
characters are defined as space (ASCII 0x20) or tab (ASCBOx0

all checks all commands
none turns off normalization for all commands.
cmds just checks commands listed with theamalize _cmds parameter.

4. ignore _data
Ignore data section of mail (except for mail headers) whewcgssing rules.

5. ignore _tls _data
Ignore TLS-encrypted data when processing rules.

6. maxcommand.line _len <int>

Alert if an SMTP command line is longer than this value. Alxseof this option or a "0” means never alert on
command line length. RFC 2821 recommends 512 as a maximumaadline length.

67

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

max_header _line _len <int>

Alert if an SMTP DATA header line is longer than this value.s&ince of this option or a "0” means never alert
on data header line length. RFC 2821 recommends 1024 as aoraxdata header line length.

max_response _line _len <int>

Alert if an SMTP response line is longer than this value. Alugeof this option or a "0” means never alert on
response line length. RFC 2821 recommends 512 as a maxingponge line length.

. alt _maxcommand.line _len <int> { <cmd> [<cmd>] }

Overridegnax.command.line _len for specific commands.

no_alerts
Turn off all alerts for this preprocessor.

invalid _cmds { <Space-delimited list of commands> }
Alert if this command is sent from client side. Default is anpy list.

valid _cmds { <Space-delimited list of commands> }

List of valid commands. We do not alert on commands in thts Default is an empty list, but preprocessor has
this list hard-coded:

{ ATRN AUTH BDAT DATA DEBUG EHLO EMAL ESAM ESND ESOM ETRN EVFY EXPN } { HELO
HELP IDENT MAIL NOOP QUIT RCPT RSET SAML SOML SEND ONEX QUEUY { STARTTLS TICK
TIME TURN TURNME VERB VRFY X-EXPS X-LINK2STATE} { XADR XAUTH XCIR XEXCH50 XGEN
XLICENSE XQUE XSTA XTRN XUSR}

alert _unknown _cmds

Alert if we don’t recognize command. Default is off.

normalize _cmds { <Space-delimited list of commands> }
Normalize this list of commands Default{SRCPT VRFY EXPN}.

xlink2state { enable | disable [drop] }
Enable/disable xlink2state alert. Drop if alerted. Deféaugnable .

print _cmds

List all commands understood by the preprocessor. Thisaratally printed out with the configuration because
it can print so much data.

disabled

Disables the SMTP preprocessorin a policy. This is usef@mgpecifying thmax.mime_depth andmax_mime_mem
in default policy without turning on the SMTP preprocessor.

enable _mime_decoding

Enables Base64 decoding of Mime attachments/data. Mellbpkse64 encoded MIME attachments/data in
one packet are pipelined. When stateful inspection is thiorethe base64 encoded MIME attachments/data
across multiple packets are decoded too. The decoding ebdancoded attachments/data ends when either
the max_mime_depth or maximum MIME sessions (calculated usimgx_mime_depth andmax.mime_men) is
reached or when the encoded data ends. The decoded datdlablavior detection using the rule option
fle _datamime . Sed:3.5.24 rule option for more details.

max_mime_depth <int>

Specifies the maximum number of base64 encoded data to dpeo@MTP session. The option take values
ranging from 5 to 20480 bytes. The default value for this iarsin 1460 bytes.

68

20. maxmime_mem <int>

This option determines (in bytes) the maximum amount of mgriee SMTP preprocessor will use for decoding
base64 encode MIME attachments/data. This value can beoset3276 bytes to 100MB. This option along
with max_mime_depth determines the base64 encoded MIME/SMTP sessions thdtevilecoded at any given

instant. The default value for this option is 838860.

Note: It is suggested to set this value such that the max méssian calculated as follows is atleast 1.
max mime session max_mime_mem/(max_mime_depth + max decoded bytes)
max decoded bytes mmé@x_mime_depth /4)*3

Also note that these values folax_ mime_memandmax mime_depth need to be same across all policy. Hence
user needs to define it in the default policy with the new kayldtisabled (used to disable SMTP preprocessor
in a policy)

Example

preprocessor SMTP; \
ports { 25 } \
inspection_type stateful \
normalize cmds \
normalize_cmds { EXPN VRFY RCPT } \
ignore_data \
ignore_tls_data \
max_command_line_len 512 \
max_header_line_len 1024 \
max_response_line_len 512 \
no_alerts \
alt_max_command_line_len 300 { RCPT } \
invalid_cmds { } \
valid_cmds { } \
xlink2state { disable } \
print_cmds

preprocessor SMTP: \
max_mime_depth 100 \
max_mime_mem 4000 \
disabled

Default

preprocessor SMTP: \
ports { 25 } \
inspection_type stateful \
normalize cmds \
normalize_cmds { EXPN VRFY RCPT } \
alt_max_command_line_len 260 { MAIL } \
alt_max_command_line_len 300 { RCPT } \
alt_max_command_line_len 500 { HELP HELO ETRN } \
alt_max_command_line_len 255 { EXPN VRFY }

Note
RCPT TO:andMAIL FROM:are SMTP commands. For the preprocessor configuration gifeeseferred to as RCPT

and MAIL, respectively. Within the code, the preprocessiunally maps RCPT and MAIL to the correct command
name.

69

2.2.8 FTP/Telnet Preprocessor

FTP/Telnet is an improvement to the Telnet decoder and gesvstateful inspection capability for both FTP and
Telnet data streams. FTP/Telnet will decode the streamtifgisng FTP commands and responses and Telnet escape
sequences and normalize the fields. FTP/Telnet works ondliettt requests and server responses.

FTP/Telnet has the capability to handle stateless pramgssieaning it only looks for information on a packet-by-
packet basis.

The defaultis to run FTP/Telnet in stateful inspection madeaning it looks for information and handles reassembled
data correctly.

FTP/Telnet has a very “rich” user configuration, similar bhattof HTTP Inspect (Sde_Z2.2.6). Users can configure
individual FTP servers and clients with a variety of optiowkich should allow the user to emulate any type of FTP
server or FTP Client. Within FTP/Telnet, there are four arefaconfiguration: Global, Telnet, FTP Client, and FTP

Server.

ANOTE

Some configuration options have an argumeryesfor no. This argument specifies whether the user wants
the configuration option to generate a ftptelnet alert or fide presence of the option indicates the optjon
itself is on, while theyes/no argument applies to the alerting functionality associatgl that option.

Global Configuration

The global configuration deals with configuration optionat tthetermine the global functioning of FTP/Telnet. The
following example gives the generic global configuratiomiat:

Format

preprocessor ftp_telnet: \
global \
inspection_type stateful \
encrypted_traffic yes \
check_encrypted

You can only have a single global configuration, you'll getearor if you try otherwise. The FTP/Telnet global
configuration must appear before the other three areas fifjcoation.

Configuration

1. inspection _type
This indicates whether to operate in stateful or statelesdem

2. encrypted _traffic <yes|no >
This option enables detection and alerting on encryptedef@ind FTP command channels.

ANOTE

Wheninspection _type isin stateless mode, checks for encrypted traffic will ocouevery packet, wheredas
in stateful mode, a particular session will be noted as gxted/and not inspected any further.

3. check _encrypted

Instructs the preprocessor to continue to check an enahgegtgsion for a subsequent command to cease encryp-
tion.

70

Example Global Configuration

preprocessor ftp_telnet: \
global inspection_type stateful encrypted_traffic no

Telnet Configuration

The telnet configuration deals with configuration optioret thetermine the functioning of the Telnet portion of the
preprocessor. The following example gives the generietaelanfiguration format:

Format

preprocessor ftp_telnet_protocol: \
telnet \
ports { 23 } \
normalize \
ayt_attack_thresh 6 \
detect_anomalies

There should only be a single telnet configuration, and syuEs® instances will override previously set values.

Configuration

1. ports {<port > [<port >< ...>]}
This is how the user configures which ports to decode as tehffit. SSH tunnels cannot be decoded, so adding
port 22 will only yield false positives. Typically port 23 Ivbe included.

2. normalize
This option tells the preprocessor to normalize the telragfi¢ by eliminating the telnet escape sequences. It
functions similarly to its predecessor, the teldetode preprocessor. Rules written with 'raw’ contentai
will ignore the normalized buffer that is created when thisi@n is in use.

3. ayt _attack _thresh < number >
This option causes the preprocessor to alert when the nuofb@nsecutive telnet Are You There (AYT)
commands reaches the number specified. It is only appliegide the mode is stateful.

4. detect _anomalies

In order to support certain options, Telnet supports subti@ipn. Per the Telnet RFC, subnegotiation begins
with SB (subnegotiation begin) and must end with an SE (sgbiietion end). However, certain implementa-

tions of Telnet servers will ignore the SB without a corrasgiog SE. This is anomalous behavior which could
be an evasion case. Being that FTP uses the Telnet proto¢béantrol connection, it is also susceptible to

this behavior. Theletect _anomalies option enables alerting on Telnet SB without the correspan8E.

Example Telnet Configuration

preprocessor ftp_telnet_protocol: \
telnet ports { 23 } normalize ayt attack_thresh 6

FTP Server Configuration

There are two types of FTP server configurations: defaultgné address.

71

Default This configuration supplies the default server configureftw any FTP server that is not individually con-
figured. Most of your FTP servers will most likely end up usthg default configuration.

Example Default FTP Server Configuration

preprocessor ftp_telnet_protocol: \
ftp server default ports { 21 }

Refer td7# for the list of options set in default ftp servenfiguration.

Configuration by IP Address This format is very similar to “default”, the only differeadeing that specific IPs
can be configured.

Example IP specific FTP Server Configuration

preprocessor _telnet_protocol: \
ftp server 10.1.1.1 ports { 21 } ftp_cmds { XPWD XCWD }

FTP Server Configuration Options

1. ports {<port > [<port >< ...>]}
This is how the user configures which ports to decode as FTPneomd channel traffic. Typically port 21 will
be included.

2. print _cmds
During initialization, this option causes the preprocessgrint the configuration for each of the FTP commands
for this server.

3. ftp _emds {cmdcmd}
The preprocessor is configured to alert when it sees an FTihemehthat is not allowed by the server.

This option specifies a list of additional commands allowgdtis server, outside of the default FTP command
set as specified in RFC 959. This may be used to allow the u$e okt commands identified in RFC 775, as
well as any additional commands as needed.

For example:
ftp_cmds { XPWD XCWD XCUP XMKD XRMD }

4. def _-maxparam_len <number >
This specifies the default maximum allowed parameter lefaggthn FTP command. It can be used as a basic
buffer overflow detection.

5. alt _maxparam_len <number> {cmdcmd}

This specifies the maximum allowed parameter length for pleeified FTP command(s). It can be used as a
more specific buffer overflow detection. For example the USBRmand — usernames may be no longer than
16 bytes, so the appropriate configuration would be:

alt_max_param_len 16 { USER }

6. chk_str _fmt {cmdcmd}
This option causes a check for string format attacks in tleeifipd commands.

72

7. cmd_validity ecmd < fmt >
This option specifies the valid format for parameters of @gigommand.
fmt must be enclosed ir>’s and may contain the following:

Value Description
int Parameter must be an integer
number Parameter must be an integer between 1 and 255
char<chars> Parameter must be a single character, onedfars>
date<datefmt- Parameter follows format specified, where:

n Number

C Character
I optional format enclosed

| OR
{} choice of options
.+ - literal
string Parameter is a string (effectively unrestricted)
hostport Parameter must be a host/port specified, per RFC 959
long hostport Parameter must be a long host port specified, per RFC
1639
extendedhostport | Parameter must be an extended host port specified, per
RFC 2428
{}] One of choices enclosed within, separated by
{11 One of the choices enclosed withj, optional value

enclosed withirj]

Examples of the cmdalidity option are shown below. These examples are theuttafhecks, per RFC 959 and
others performed by the preprocessor.

cmd_validity MODE <char SBC>

cmd_validity STRU <char FRP>

cmd_validity ALLO < int [char R int] >

cmd_validity TYPE < { char AE [char NTC] | char | | char L [numbe rj}>
cmd_validity PORT < host_port >

A cmd_validity line can be used to override these defaults andidreacheck for other commands.

This allows additional modes, including mode Z which allow s for
zip-style compression.
cmd_validity MODE < char ASBCZ >

Allow for a date in the MDTM command.
cmd_validity MDTM < [date nnnnnnnnnnnnnnl.n[n[n]]]] stri ng >

MDTM is an off case that is worth discussing. While not paranfestablished standard, certain FTP servers ac-
cept MDTM commands that set the modification time on a file. ffilest common among servers that do, accept
aformatusing YYYYMMDDHHmMmss[.uuu]. Some others accepitafat using YYYYMMDDHHmMmMsS[+—-

]TZ format. The example above is for the first case (time fdrasaspecified in http://www.ietf.org/internet-
drafts/draft-ietf-ftpext-mist-16.txt)

To check validity for a server that uses the TZ format, usddhewing:
cmd_validity MDTM < [date nnnnnnnnnnnnnn[{+|-}n[n]]] str ing >

8. telnet _cmds <yes|no>

This option turns on detection and alerting when telnetgssaquences are seen on the FTP command channel.
Injection of telnet escape sequences could be used as dareattempt on an FTP command channel.

73

9. ignore _telnet _erase _cmds <yeslno >

This option allows Snort to ignore telnet escape sequemcesdse character (TNC EAC) and erase line (TNC
EAL) when normalizing FTP command channel. Some FTP semd@nsot process those telnet escape se-
quences.

10. data _chan

This option causes the rest of snort (rules, other prepsocgsto ignore FTP data channel connections. Using
this option means thalO INSPECTION other than TCP state will be performed on FTP data transfiérs.
can be used to improve performance, especially with largearfinsfers from a trusted source. If your rule set
includes virus-type rules, it is recommended that thisaptiot be used.

Use of the "datachan” option is deprecated in favor of the "ignatatachan” option. "datachan” will be
removed in a future release.

11. ignore _data _chan <yes no>

This option causes the rest of Snort (rules, other prepsotskto ignore FTP data channel connections. Setting
this option to "yes” means th&tO INSPECTION other than TCP state will be performed on FTP data transfers.
It can be used to improve performance, especially with léilgéransfers from a trusted source. If your rule set
includes virus-type rules, it is recommended that thisaptiot be used.

FTP Server Base Configuration Options

The base FTP server configuration is as follows. Optionsifipeédn the configuration file will modify this set of
options. FTP commands are added to the set of allowed comsnd@hé other options will override those in the base
configuration.

def_max_param_len 100
ftp_cmds { USER PASS ACCT CWD CDUP SMNT

QUIT REIN TYPE STRU MODE RETR

STOR STOU APPE ALLO REST RNFR

RNTO ABOR DELE RMD MKD PWD LIST

NLST SITE SYST STAT HELP NOOP }

ftp_cmds { AUTH ADAT PROT PBSZ CONF ENC }
ftp_cmds { PORT PASV LPRT LPSV EPRT EPSV }
ftp_cmds { FEAT OPTS }
ftp_cmds { MDTM REST SIZE MLST MLSD }
alt_ max_param_len 0 { CDUP QUIT REIN PASV STOU ABOR PWD SYST ROP }
cmd_validity MODE < char SBC >
cmd_validity STRU < char FRPO [string | >
cmd_validity ALLO < int [char R int] >
cmd_validity TYPE < { char AE [char NTC] | char | | char L [numbe rj}>
cmd_validity PORT < host_port >
cmd_validity LPRT < long_host_port >
cmd_validity EPRT < extd_host_port >
cmd_validity EPSV < [{1 | 2 | 'ALL’ }] >

FTP Client Configuration

Similar to the FTP Server configuration, the FTP client canfigions has two types: default, and by IP address.

Default This configuration supplies the default client configunatior any FTP client that is not individually con-
figured. Most of your FTP clients will most likely end up usitige default configuration.

74

Example Default FTP Client Configuration

preprocessor ftp_telnet_protocol: \
ftp client default bounce no max_resp_len 200

Configuration by IP Address This format is very similar to “default”, the only differeadeing that specific IPs
can be configured.

Example IP specific FTP Client Configuration

preprocessor ftp_telnet_protocol: \
ftp client 10.1.1.1 bounce yes max_resp_len 500

FTP Client Configuration Options

1. maxresp _len <number >

This specifies the maximum allowed response length to an BifPmand accepted by the client. It can be used
as a basic buffer overflow detection.

2. bounce <yesjno >

This option turns on detection and alerting of FTP bouncecks. An FTP bounce attack occurs when the FTP
PORT command is issued and the specified host does not matbloghof the client.

3. bounce _to < CIDR,[port |portlow,porthi] >

When the bounce option is turned on, this allows the PORT canahio use the IP address (in CIDR format) and
port (or inclusive port range) without generating an aldrtan be used to deal with proxied FTP connections
where the FTP data channel is different from the client.

A few examples:

e Allow bounces to 192.162.1.1 port 20020 — ie, the usRQRT 192,168,1,1,78,52
bounce_to { 192.168.1.1,20020 }

e Allow bounces to 192.162.1.1 ports 20020 through 20040 thie,use ofPORT 192,168,1,1,78xx
where xx is 52 through 72 inclusive.

bounce_to { 192.168.1.1,20020,20040 }

e Allow bouncesto 192.162.1.1 port 20020 and 192.168.1.220630.
bounce_to { 192.168.1.1,20020 192.168.1.2,20030 }

e Allows bounces to IPv6 address fe8::5 port 59340.

ANOTE

‘ IPv6 support must be enabled.

bounce to { fe8::5,59340 }

4. telnet _cmds <yesjno >
This option turns on detection and alerting when telnetpssaquences are seen on the FTP command channel.
Injection of telnet escape sequences could be used as aareatempt on an FTP command channel.

5. ignore _telnet _erase _cmds <yes|no >

This option allows Snort to ignore telnet escape sequemcesdse character (TNC EAC) and erase line (TNC
EAL) when normalizing FTP command channel. Some FTP cligntsot process those telnet escape sequences.

75

Examples/Default Configuration from snort.conf

preprocessor ftp_telnet: \
global \
encrypted_traffic yes \
inspection_type stateful

preprocessor ftp_telnet_protocol:\
telnet \
normalize \
ayt_attack_thresh 200

This is consistent with the FTP rules as of 18 Sept 2004.

Set CWD to allow parameter length of 200

MODE has an additional mode of Z (compressed)

Check for string formats in USER & PASS commands

Check MDTM commands that set modification time on the file.

preprocessor ftp_telnet_protocol: \
ftp server default \
def_max_param_len 100 \
alt_max_param_len 200 { CWD } \
cmd_validity MODE < char ASBCZ > \
cmd_validity MDTM < [date nnnnnnnnnnnnnnl.n[n[n]]]] stri ng >\
chk_str_fmt { USER PASS RNFR RNTO SITE MKD } \
telnet_ cmds yes \
ignore_data_chan yes

preprocessor ftp_telnet_protocol: \
ftp client default \
max_resp_len 256 \
bounce yes \
telnet_cmds yes

2.29 SSH

The SSH preprocessor detects the following exploits: €hgk-Response Buffer Overflow, CRC 32, Secure CRT,
and the Protocol Mismatch exploit.

Both Challenge-Response Overflow and CRC 32 attacks octarrthe key exchange, and are therefore encrypted.
Both attacks involve sending a large payload (20kb+) to #mees immediately after the authentication challenge. To
detect the attacks, the SSH preprocessor counts the nurinpgies transmitted to the server. If those bytes exceed a
predefined limit within a predefined number of packets, art @@enerated. Since the Challenge-Response Overflow
only effects SSHv2 and CRC 32 only effects SSHv1, the SSHares$ring exchange is used to distinguish the attacks.

The Secure CRT and protocol mismatch exploits are obseximdibre the key exchange.

Configuration

By default, all alerts are disabled and the preprocessakstteaffic on port 22.

The available configuration options are described below.

1. server _ports {<port > [<port >< ...>]}
This option specifies which ports the SSH preprocessor dhnspect traffic to.

76

10.

11.

12.

max_encrypted _packets < number >

The number of encrypted packets that Snort will inspectigsfinoring a given SSH session. The SSH vulner-
abilities that Snort can detect all happen at the very béggnof an SSH session. Once marcryptedpackets
packets have been seen, Snort ignores the session to mpedsrmance. The default is set to 25. This value
can be set from 0 to 65535.

max_client _bytes < number >

The number of unanswered bytes allowed to be transferrentdoaferting on Challenge-Response Overflow or
CRC 32. This number must be hit before mexcryptedpackets packets are sent, or else Snort will ignore the
traffic. The default is set to 19600. This value can be set Bdm65535.

max_server _version _len < number >

The maximum number of bytes allowed in the SSH server versiong before alerting on the Secure CRT
server version string overflow. The default is set to 80. Thise can be set from 0 to 255.

autodetect

Attempt to automatically detect SSH.

enable _respoverflow
Enables checking for the Challenge-Response Overflow #xplo

. enable _sshlcrc32

Enables checking for the CRC 32 exploit.

enable _srvoverflow
Enables checking for the Secure CRT exploit.

enable _protomismatch
Enables checking for the Protocol Mismatch exploit.

enable _badmsgdir

Enable alerts for traffic flowing the wrong direction. Fortarsce, if the presumed server generates client traffic,
or if a client generates server traffic.

enable _paysize

Enables alerts for invalid payload sizes.

enable _recognition
Enable alerts for non-SSH traffic on SSH ports.

The SSH preprocessor should work by default. After makryptedpackets is reached, the preprocessor will stop
processing traffic for a given session. If Challenge-Respddverflow or CRC 32 false positive, try increasing the
number of required client bytes with makent bytes.

Example Configuration from snort.conf

Looks for attacks on SSH server port 22. Alerts at 19600 umawledged bytes within 20 encrypted packets for the
Challenge-Response Overflow/CRC32 exploits.

preprocessor ssh: \
server_ports { 22 } \
max_client_bytes 19600 \
max_encrypted_packets 20 \
enable_respoverflow \
enable_sshlcrc32

77

2.2.10 DNS

The DNS preprocessor decodes DNS Responses and can detitawing exploits: DNS Client RData Overflow,
Obsolete Record Types, and Experimental Record Types.

DNS looks at DNS Response traffic over UDP and TCP and it regu8tream preprocessor to be enabled for TCP
decoding.

Configuration

By default, all alerts are disabled and the preprocessakstteaffic on port 53.

The available configuration options are described below.

1. ports {<port > [<port ><..>]}
This option specifies the source ports that the DNS prepsocssiould inspect traffic.

2. enable _obsolete _types
Alert on Obsolete (per RFC 1035) Record Types

3. enable _experimental _types
Alert on Experimental (per RFC 1035) Record Types

4. enable _rdata _overflow
Check for DNS Client RData TXT Overflow

The DNS preprocessor does nothing if none of the 3 vulnetiakiit checks for are enabled. It will not operate on
TCP sessions picked up midstream, and it will cease operatica session if it loses state because of missing data
(dropped packets).

Examples/Default Configuration from snort.conf

Looks for traffic on DNS server port 53. Check for the DNS dli®Data overflow vulnerability. Do not alert on
obsolete or experimental RData record types.

preprocessor dns: \
ports { 53 } \
enable_rdata_overflow

2.2.11 SSL/TLS

Encrypted traffic should be ignored by Snort for both perfance reasons and to reduce false positives. The SSL
Dynamic Preprocessor (SSLPP) decodes SSL and TLS traffiojtiohally determines if and when Snort should
stop inspection of it.

Typically, SSL is used over port 443 as HTTPS. By enablingS3B& PP to inspect port 443 and enabling the noin-
spectencrypted option, only the SSL handshake of each connegiibbe inspected. Once the traffic is determined
to be encrypted, no further inspection of the data on the ection is made.

By default, SSLPP looks for a handshake followed by encd/pt&fic traveling to both sides. If one side responds
with an indication that something has failed, such as thellaake, the session is not marked as encrypted. Verifying
that faultless encrypted traffic is sent from both endpoémsures two things: the last client-side handshake packet
was not crafted to evade Snort, and that the traffic is legitity encrypted.

In some cases, especially when packets may be missed, thelms#rved response from one endpoint will be TCP
ACKs. Therefore, if a user knows that server-side encrygtged can be trusted to mark the session as encrypted, the
user should use the 'trustservers’ option, documentedwbelo

78

Configuration

1. ports {<port > [<port ><..>]}
This option specifies which ports SSLPP will inspect traffic o
By default, SSLPP watches the following ports:

e 443 HTTPS
e 465 SMTPS
e 563 NNTPS
e 636 LDAPS
e 989 FTPS
e 992 TelnetS
e 993 IMAPS
e 994 IRCS
e 995 POPS

2. noinspect _encrypted
Disable inspection on traffic that is encrypted. Defaultffs o

3. trustservers

Disables the requirement that application (encrypted) daist be observed on both sides of the session before
a session is marked encrypted. Use this option for sligtetyel performance if you trust that your servers are
not compromised. This requires thanspect _encrypted option to be useful. Default is off.

Examples/Default Configuration from snort.conf

Enables the SSL preprocessor and tells it to disable ingpmeah encrypted traffic.

preprocessor ssl: noinspect_encrypted

Rule Options

The following rule options are supported by enablingg$ie preprocessor:

ssl_version
ss|_state

ssl _version

Thessl _version rule option tracks the version negotiated between the e@ntipof the SSL encryption. The
list of version identifiers are below, and more than one ifienttan be specified, via a comma separated list.
Lists of identifiers are OR’ed together.

The option will match if any one of the OR’ed versions are uisethe SSL connection. To check for two or
more SSL versions in use simultaneously, multgsle_version rule options should be used.
Syntax

ssl_version: <version-list>

version-list = version | version , version-list
version = ["1"] "sslv2" | "sslv3" | "tls1.0" | "tls1.1" | "tls 1.2

Examples

79

ssl_version:sslv3;
ssl_version:tls1.0,tls1.1,tls1.2;
ssl_version:!ssiv2;

ssl _state

Thessl _state rule option tracks the state of the SSL encryption duringptfoeess of hello and key exchange.
The list of states are below. More than one state can be gacifia a comma separated list, and are OR’ed
together.

The option will match if the connection is currently in anyeoof the OR’ed states. To ensure the connection
has reached each of a set of states, multiple rules usirgglthstate rule option should be used.

Syntax

ssl_state: <state-list>

state-list = state | state , state-list
state = ["1"] "client_hello" | "server_hello" | "client_ke yx" | "server_keyx" | "unknown"

Examples

ssl_state:client_hello;
ssl_state:client_keyx,server_keyx;
ssl_state:!server_hello;

2.2.12 ARP Spoof Preprocessor
The ARP spoof preprocessor decodes ARP packets and defRBtattacks, unicast ARP requests, and inconsistent
Ethernet to IP mapping.

When no arguments are specified to arpspoof, the prepradespects Ethernet addresses and the addresses in the
ARP packets. When inconsistency occurs, an alert with GIDdlid SID 2 or 3 is generated.

When ™unicast " is specified as the argument of arpspoof, the preproce$mmks for unicast ARP requests. An
alert with GID 112 and SID 1 will be generated if a unicast ARBuest is detected.

Specify a pair of IP and hardware address as the argumearisimof _detect _host . The host with the IP address
should be on the same layer 2 segment as Snort is. SpecifyosnéFhMAC combo per line. The preprocessor will
use this list when detecting ARP cache overwrite attacksrtAID 4 is used in this case.

Format

preprocessor arpspoof[: -unicast]
preprocessor arpspoof _detect_host: ip mac

Option | Description
ip IP address.
mac The Ethernet address corresponding to the preceding IP.

Example Configuration

The first example configuration does neither unicast detectbr ARP mapping monitoring. The preprocessor merely
looks for Ethernet address inconsistencies.

preprocessor arpspoof

80

The next example configuration does not do unicast detebtibmonitors ARP mapping for hosts 192.168.40.1 and
192.168.40.2.

preprocessor arpspoof
preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f: 00:f0:0f:00
preprocessor arpspoof _detect_host: 192.168.40.2 f0:0f: 00:f0:0f:01

The third example configuration has unicast detection euibl

preprocessor arpspoof: -unicast
preprocessor arpspoof_detect host; 192.168.40.1 f0:0f; 00:f0:0f:00
preprocessor arpspoof_detect_host; 192.168.40.2 f0:0f; 00:f0:0f:.01

2.2.13 DCE/RPC 2 Preprocessor

The main purpose of the preprocessor is to perform SMB desetation and DCE/RPC defragmentation to avoid
rule evasion using these techniques. SMB desegmentatiparisrmed for the following commands that can be
used to transport DCE/RPC requests and respondgte , Write Block Raw , Write and Close , Write AndX ,
Transaction , Transaction Secondary , Read, Read Block Raw andRead AndX. The following transports are sup-
ported for DCE/RPC: SMB, TCP, UDP and RPC over HTTP v.1 praxy server. New rule options have been im-
plemented to improve performance, reduce false positimdseduce the count and complexity of DCE/RPC based
rules.

Dependency Requirements

For proper functioning of the preprocessor:
e Stream session tracking must be enabled siream5 . The preprocessor requires a session tracker to keep its
data.

e Stream reassembly must be performed for TCP sessionss dédided that a session is SMB or DCE/RPC, ei-
ther through configured ports, servers or autodetectiegicdipc2 preprocessor will enable stream reassembly
for that session if necessary.

¢ |P defragmentation should be enabled, i.e.fthg8 preprocessor should be enabled and configured.

Target Based

There are enough important differences between Windowsanaba versions that a target based approach has been
implemented. Some important differences:

Named pipe instance tracking

A combination of valid login handle or UID, share handle oDTdnd file/named pipe handle or FID must be
used to write data to a named pipe. The binding between thet@piendent on OS/software version.
Samba 3.0.22 and earlier

Any valid UID and TID, along with a valid FID can be used to makesquest, however, if the TID
used in creating the FID is deleted (via a tree disconndut) AID that was created using this TID
becomes invalid, i.e. no more requests can be written taidvaied pipe instance.

Samba greater than 3.0.22

81

Any valid TID, along with a valid FID can be used to make a rexjuélowever, only the UID used
in opening the named pipe can be used to make a request usifkgjBhhandle to the named pipe
instance. If the TID used to create the FID is deleted (vi@a tlisconnect), the FID that was created
using this TID becomes invalid, i.e. no more requests cantitéew to that named pipe instance. If
the UID used to create the named pipe instance is deletead [aigoff AndX), since it is necessary
in making a request to the named pipe, the FID becomes invalid

Windows 2003
Windows XP
Windows Vista

These Windows versions require strict binding between iz UID and FID used to make a request
to a named pipe instance. Both the UID and TID used to open dnged pipe instance must be
used when writing data to the same named pipe instance. fohereeleting either the UID or TID
invalidates the FID.

Windows 2000

Windows 2000 is interesting in that the first request to a rihpiige must use the same binding as that
of the other Windows versions. However, requests afterfttlaiv the same binding as Samba 3.0.22
and earlier, i.e. no binding. It also follows Samba gredtant3.0.22 in that deleting the UID or TID
used to create the named pipe instance also invalidates it.

Accepted SMB commands

Samba in particular does not recognize certain commandsr amiPC$ tree.

Samba (all versions)
Under anPC$ tree, does not accept:
Open
Write And Close
Read
Read Block Raw
Write Block Raw
Windows (all versions)

Accepts all of the above commands undeiRCH tree.

AndX command chaining

Windows is very strict in what command combinations it akboiw be chained. Samba, on the other hand, is
very lax and allows some nonsensical combinations, e.gtipfailogins and tree connects (only one place to
return handles for these), login/logoff and tree connesst/tlisconnect. Ultimately, we don't want to keep track
of data that the server won't accept. An evasion possibiityld be accepting a fragment in a request that the
server won't accept that gets sandwiched between an exploit

Transaction tracking

The differences betweenTaansaction request and using one of théite* commands to write data to a
named pipe are that (1) Hansaction performs the operations of a write and a read from the naneel pi
whereas in using th@&/rite* commands, the client has to explicitly send one ofRkeead* requests to tell the
server to send the response and (2)asaction request is not written to the named pipe until all of the data i
received (via potentidiransaction Secondary requests) whereas with thigite* commands, data is written

to the named pipe as it is received by the server. Multiple3aation requests can be made simultaneously to
the same named pipe. These requests can also be segmeht&nsiction Secondary commands. What
distinguishes them (when the same named pipe is being wiittd.e. having the same FID) are fields in the
SMB header representing a process id (PID) and multipledi®j. The PID represents the process this request
is a part of. An MID represents different sub-processesiwishprocess (or under a PID). Segments for each
"thread” are stored separately and written to the namedphen all segments are received. It is necessary to
track this so as not to munge these requests together (wlialiwe a potential evasion opportunity).

82

Windows (all versions)

Uses a combination of PID and MID to define a "thread”.
Samba (all versions)

Uses just the MID to define a "thread”.

Multiple Bind Requests

A Bind request is the first request that must be made in a conneatiented DCE/RPC session in order to
specify the interface/interfaces that one wants to comoateiwith.

Windows (all versions)
For all of the Windows versions, only orind can ever be made on a session whether or not it
succeeds or fails. Any binding after that must useAher Context request. If anotheBind is
made, all previous interface bindings are invalidated.

Samba 3.0.20 and earlier
Any amount ofBind requests can be made.

Samba later than 3.0.20
AnotherBind request can be made if the first failed and no interfaces wereessfully bound to. If
aBind after a successfllind is made, all previous interface bindings are invalidated.

DCE/RPC Fragmented requests - Context ID

Each fragment in a fragmented request carries the contexttice bound interface it wants to make the request
to.

Windows (all versions)
The context id that is ultimately used for the request is aiord in the first fragment. The context id
field in any other fragment can contain any value.

Samba (all versions)
The context id that is ultimately used for the request is @i in the last fragment. The context id
field in any other fragment can contain any value.

DCE/RPC Fragmented requests - Operation number

Each fragment in a fragmented request carries an operatimb@r (opnum) which is more or less a handle to
a function offered by the interface.

Samba (all versions)
Windows 2000
Windows 2003

Windows XP
The opnum that is ultimately used for the request is containghe last fragment. The opnum field
in any other fragment can contain any value.

Windows Vista
The opnum that is ultimately used for the request is conthing¢he first fragment. The opnum field
in any other fragment can contain any value.

DCE/RPC Stub data byte order

The byte order of the stub data is determined differently¥amrdows and Samba.

Windows (all versions)
The byte order of the stub data is that which was used iBitite request.

Samba (all versions)
The byte order of the stub data is that which is used in theagiorarrying the stub data.

83

Configuration

Thedcerpc2 preprocessor has a global configuration and one or morerssyméigurations. The global preprocessor
configuration name idcerpc2 and the server preprocessor configuration nardeeipc2 _server .

Global Configuration

preprocessor dcerpc2

The globaldcerpc2 configuration is required. Only one glolizkrpc2 configuration can be specified.

Option syntax

| Option | Argument | Required| Default

memcap <memcap> NO memcap 102400
disable _defrag NONE NO OFF
max frag _len <max-frag-len> NO OFF
events <events> NO OFF
reassemble _threshold <re-thresh> NO OFF
disabled NONE NO OFF

memcap = 1024-4194303 (kilobytes)

max-frag-len = 1514-65535

events = pseudo-event | event | [event-list T

pseudo-event = "none" | "all"

event-list = event | event ', event-list

event = "memcap" | "smb" | "co" | "cl

re-thresh = 0-65535

Option explanations

memcap

Specifies the maximum amount of run-time memory that canlbeated. Run-time memory includes any
memory allocated after configuration. Default is 100 MB.

disabled

Disables the preprocessor. By default this value is turried¢hen the preprocessor is disabled only the
memcap option is applied when specified with the configunatio

disable _defrag
Tells the preprocessor not to do DCE/RPC defragmentatiefau is to do defragmentation.
max_frag _len

Specifies the maximum fragment size that will be added to #feagmention module. If a fragment is
greater than this size, it is truncated before being addéuketaefragmentation module. Default is set to
-1. The allowed range for this option is 1514 - 65535.

events

Specifies the classes of events to enable. (See Eventssiectam enumeration and explanation of events.)

memcap
Only one event. If the memcap is reached or exceeded, alert.
smb

84

Alert on events related to SMB processing.
co

Stands for connection-oriented DCE/RPC. Alert on evetidsad to connection-oriented DCE/RPC
processing.

cl

Stands for connectionless DCE/RPC. Alert on events relmtenbnnectionless DCE/RPC pro-
cessing.

reassemble _threshold

Specifies a minimum number of bytes in the DCE/RPC desegiti@mtand defragmentation buffers before
creating a reassembly packet to send to the detection eniieoption is useful in inline mode so as to
potentially catch an exploit early before full defragmeiatiais done. A value of 0 supplied as an argument
to this option will, in effect, disable this option. Defaidtdisabled.

Option examples

memcap 30000

max_frag_len 16840

events none

events all

events smb

events co

events [co]

events [smb, co]

events [memcap, smb, co, cl]
reassemble_threshold 500

Configuration examples

preprocessor dcerpc2
preprocessor dcerpc2: memcap 500000

preprocessor dcerpc2: max_frag_len 16840, memcap 300000, events smb
preprocessor dcerpc2: memcap 50000, events [memcap, smb, c o, cl], max_frag_len 14440
preprocessor dcerpc2: disable_defrag, events [memcap, sm b]

preprocessor dcerpc2: reassemble_threshold 500
Default global configuration

preprocessor dcerpc2: memcap 102400

Server Configuration

preprocessor dcerpc2_server

Thedcerpc2 _server configuration is optional. Alcerpc2 _server configuration must start witbefault — or net
options. Thalefault andnet options are mutually exclusive. At most one default configion can be specified. If
nodefault configuration is specified, default values will be used fardéfault configuration. Zero or moreet
configurations can be specified. For alogrpc2 _server configuration, if non-required options are not specified, th
defaults will be used. When processing DCE/RPC trafficddfault configuration is used if no net configurations
match. If anet configuration matches, it will override tllefault configuration. Anet configuration matches if the
packet’s server IP address matches an IP address or ndiiepp@tithenet configuration. Theet option supports
IPv6 addresses. Note that port and ip variables definegbihconf ~ CANNOT be used.

Option syntax

85

Option Argument | Required| Default
default NONE YES NONE
net <net> YES NONE
policy <policy> NO policy WinXP
detect <detect> NO detect [smb [139,445], tcp 135,
udp 135, rpc-over-http-server
593]
autodetect <detect> NO autodetect [tcp 1025:, udp 1025:,
rpc-over-http-server 1025:]
no_autodetect _http _proxy _ports NONE NO DISABLED (The preprocessor autodeteq
on all proxy ports by default)
smb_invalid _shares <shares> NO NONE
smb_max_chain <max-chain> NO smb_max_chain 3
net =ip | T ip-list T
ip-list =ip | ip ') ip-list
ip = ip-addr | ip-addr /' prefix | ip4-addr '/’ netmask
ip-addr = ip4-addr | ip6-addr
ip4-addr = a valid IPv4 address
ip6-addr = a valid IPv6 address (can be compressed)
prefix = a valid CIDR
netmask = a valid netmask
policy = "Win2000" | "Win2003" | "WinXP" | "WinVista" |
"Samba" | "Samba-3.0.22" | "Samba-3.0.20"
detect = "none" | detect-opt | [detect-list T
detect-list = detect-opt | detect-opt ’,’ detect-list
detect-opt = transport | transport port-item |
transport [port-list]’
transport = "smb" | "tcp" | "udp" | "rpc-over-http-proxy" |
"rpc-over-http-server"
port-list = port-item | port-item ', port-list
port-item = port | port-range
port-range = "' port | port ' | port ' port
port = 0-65535
shares = share | [share-list 7
share-list = share | share ', share-list
share = word | ™ word ™ | ™ var-word "
word = graphical ASCII characters except ') ™ ' T '$’
var-word = graphical ASCII characters except ') ™ 7T T
max-chain = 0-255

Because the Snort main parser treats '$’ as the start of ablarand tries to expand it, shares with '$’ must be
enclosed quotes.

Option explanations

default

Specifies that this configuration is for the default servexfiguration.

net
Specifies that this configuration is an IP or net specific condition. The configuration will only apply to
the IP addresses and nets supplied as an argument.

policy
Specifies the target-based policy to use when processirfguDes "WinXP”.

detect

Specifies the DCE/RPC transport and server ports that st@uttbtected on for the transport. Defaults
are ports 139 and 445 for SMB, 135 for TCP and UDP, 593 for RP& BM TP server and 80 for RPC

over HTTP proxy.

86

autodetect

Specifies the DCE/RPC transport and server ports that thprqaressor should attempt to autodetect on
for the transport. The autodetect ports are only queried dletect transport/ports match the packet. The
order in which the preprocessor will attempt to autodetdtitbe - TCP/UDP, RPC over HTTP server,
RPC over HTTP proxy and lastly SMB. Note that most dynamic IRFEC ports are above 1024 and ride
directly over TCP or UDP. It would be very uncommon to see SMBanything other than ports 139 and
445. Defaults are 1025-65535 for TCP, UDP and RPC over HTTWese

no_autodetect _http _proxy _ports

By default, the preprocessor will always attempt to autedtsor ports specified in the detect configuration
for rpc-over-http-proxy. This is because the proxy is likalweb server and the preprocessor should not
look at all web traffic. This option is useful if the RPC over HT proxy configured with the detect option
is only used to proxy DCE/RPC traffic. Default is to autodetetRPC over HTTP proxy detect ports.

smb_invalid _shares

Specifies SMB shares that the preprocessor should alertaonaftempt is made to connect to them via a
Tree Connect orTree Connect AndX . Defaultis empty.

smb_max_chain

Specifies the maximum amount of AndX command chaining thallésved before an alert is generated.
Default maximum is 3 chained commands. A value of 0 disalblissaption. This value can be set from 0
to 255.

Option examples

net 192.168.0.10

net 192.168.0.0/24

net [192.168.0.0/24]

net 192.168.0.0/255.255.255.0

net feah:45b3:ab92:8ac4:d322:007f.e5aa:7845
net feah:45b3:ah92:8ac4:d322:007f.e5aa:7845/128
net feah:45b3::/32

net [192.168.0.10, feab:45b3::/32]

net [192.168.0.0/24, feah:45h3:ab92:8ac4:d322:007f.e5 aa:7845]
policy Win2000

policy Samba-3.0.22

detect none

detect smb

detect [smb]

detect smb 445

detect [smb 445]

detect smb [139,445]

detect [smb [139,445]]

detect [smb, tcp]

detect [smb 139, tcp [135,2103]]

detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver [593,6002:6004]]
autodetect none

autodetect tcp

autodetect [tcp]

autodetect tcp 2025:

autodetect [tcp 2025:]

autodetect tcp [2025:3001,3003:]

autodetect [tcp [2025:3001,3003:]]

autodetect [tcp, udp]

autodetect [tcp 2025:, udp 2025:]

autodetect [tcp 2025:, udp, rpc-over-http-server [1025:6 001,6005:]]
smb_invalid_shares private

smb_invalid_shares "private”

smb_invalid_shares "C$"

smb_invalid_shares [private, "C$"]
smb_invalid_shares ["private”, "C$"]
smb_max_chain 1

87

Configuration examples

preprocessor dcerpc2_server: \
default

preprocessor dcerpc2_server: \
default, policy Win2000

preprocessor dcerpc2_server: \
default, policy Win2000, detect [smb, tcp], autodetect tcp 1025:, \
smb_invalid_shares ['C$", "D$", "ADMIN$"]

preprocessor dcerpc2_server: net 10.4.10.0/24, policy Wi n2000

preprocessor dcerpc2_server: \
net [10.4.10.0/24,feab:45b3::/126], policy WinVista, sm b_max_chain 1

preprocessor dcerpc2_server: \
net [10.4.10.0/24,feab:45b3::/126], policy WinVista, \
detect [smb, tcp, rpc-over-http-proxy 8081],
autodetect [tcp, rpc-over-http-proxy [1025:6001,6005:] 1\
smb_invalid_shares ['C$", "ADMIN$"], no_autodetect_htt p_proxy_ports

preprocessor dcerpc2_server: \
net [10.4.11.56,10.4.11.57], policy Samba, detect smb, au todetect none

Default server configuration

preprocessor dcerpc2_server: default, policy WinXP, \
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver 593, \
autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 10 25:], smb_max_chain 3

Completedcerpc2 default configuration

preprocessor dcerpc2: memcap 102400

preprocessor dcerpc2_server: \
default, policy WinXP, \
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver 593, \
autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 10 25:], smb_max_chain 3

Events

The preprocessor uses GID 133 to register events.

Memcap events

SID | Description
1 | If the memory cap is reached and the preprocessor is configoiadert.

SMB events

SID | Description

2 | Aninvalid NetBIOS Session Service type was specified in gader. Valid types arédessage,
Request (only from client), Positive Response (only from server),Negative Response
(only from server)Retarget Response (only from server) anéeep Alive
3 | An SMB message type was specified in the header. Either astegas made by the server ona
response was given by the client.

88

The SMB id does not equalxffSMB . Note that since the preprocessor does not yet sug
SMB2, id of \xfeSMB is turned away before an eventable point is reached.

The word count of the command header is invalid. SMB commauagle pretty specific worg
counts and if the preprocessor sees a command with a word tmatndoesn't jive with that
command, the preprocessor will alert.

Some commands require a minimum number of bytes after thenzomd header. If a comman
requires this and the byte count is less than the minimumiredjbyte count for that comman
the preprocessor will alert.

Some commands, especially the commands from the SMB Corlenngmtation require a data

format field that specifies the kind of data that will be comimext. Some commands require
specific format for the data. The preprocessor will aletiéf tormat is not that which is expectg
for that command.

Many SMB commands have a field containing an offset from tiygrtveng of the SMB header t
where the data the command is carrying starts. If this offa&t us before data that has alreg
been processed or after the end of payload, the preprocesisalert.

port

i

d
:lv

a
d

D
dy

Some SMB commands, such &ansaction , have a field containing the total amount of data

to be transmitted. If this field is zero, the preprocessoratdrt.

10

The preprocessor will alert if the NetBIOS Session Senaogth field contains a value less th
the size of an SMB header.

11

The preprocessor will alert if the remaining NetBIOS padkegth is less than the size of th
SMB command header to be decoded.

12

The preprocessor will alert if the remaining NetBIOS padkegth is less than the size of th
SMB command byte count specified in the command header.

13

The preprocessor will alert if the remaining NetBIOS padkegth is less than the size of tl
SMB command data size specified in the command header.

14

The preprocessor will alert if the total data count speciiiethe SMB command header is le
than the data size specified in the SMB command header. (@atal count must always b
greater than or equal to current data size.)

15

The preprocessor will alert if the total amount of data semttransaction is greater than the to
data count specified in the SMB command header.

16

The preprocessor will alert if the byte count specified in®B command header is less th
the data size specified in the SMB command. (The byte count ahays be greater than g
equal to the data size.)

17

Some of the Core Protocol commands (from the initial SMB enpéntation) require that th
byte count be some value greater than the data size exadtly.pieprocessor will alert if th
byte count minus a predetermined amount based on the SMB aachia not equal to the dat
size.

an

e

e

e

5S

D

tal

AN

=

18

FortheTree Connect command (and notthBee Connect AndX command),the preprocess
has to queue the requests up and wait for a server responstetmihe whether or not an IP
share was successfully connected to (which is what the pcepsor is interested in). Unlik
the Tree Connect AndX response, there is no indication in thee Connect response ast
whether the share is IPC or not. There should be under noimeahestances no more than a feg
pending tree connects at a time and the preprocessor williffleis number is excessive.

19

After a client is done writing data using thérite* commands, it issuesRead* command to
the server to tell it to send a response to the data it hasewritin this case the preprocesg
is concerned with the server response. Rhad* request contains the file id associated wit
named pipe instance that the preprocessor will ultimatehdshe data to. The server respon
however, does not contain this file id, so it need to be queutdhe request and dequeued w
the response. If multiplBead* requests are sent to the server, they are responded to indibie
they were sent. There should be under normal circumstarmce®re than a few pendiriRpad*
requests at a time and the preprocessor will alert if thislmens excessive.

or
ha
se,
th
0

20

The preprocessor will alert if the number of chained comnsana single request is greater th

or equal to the configured amount (default is 3).

89

21

With AndX command chaining it is possible to chain multiSkssion Setup AndX commands
within the same request. There is, however, only one platleeiiSMB header to return a logi
handle (or Uid). Windows does not allow this behavior, hogreévamba does. This is anomalg
behavior and the preprocessor will alert if it happens.

22

With AndX command chaining it is possible to chain multipkee Connect AndX commands
within the same request. There is, however, only one platiesrSMB header to return a tre
handle (or Tid). Windows does not allow this behavior, hogredamba does. This is anomalg
behavior and the preprocessor will alert if it happens.

23

When aSession Setup AndX request is sent to the server, the server responds (if thetg
successfully authenticates) which a user id or login hantles is used by the client in subs

guent requests to indicate that it has authenticatelchgsff AndX requestis sent by the client

to indicate it wants to end the session and invalidate thim lbgndle. With commands that a

>

us

us

D

[€

chained after &ession Setup AndX request, the login handle returned by the server is used for

the subsequent chained commands. The combinatioSexs®oon Setup AndX command with
a chained.ogoff AndX command, essentially logins in and logs off in the same rsigard is
anomalous behavior. The preprocessor will alert if it shes t

24

A Tree Connect AndX command is used to connect to a share. Tiee Disconnect com-
mand is used to disconnect from that share. The combinafiarTee Connect AndX com-
mand with a chainedree Disconnect command, essentially connects to a share and dis|
nects from the same share in the same request and is anorbalwsor. The preprocessor w
alert if it sees this.

con-

25 | An Open AndXorNt Create AndX command is used to open/create a file or named pipe. (The
preprocessor is only interested in named pipes as this ise@@E/RPC requests are written to.)
TheClose command is used to close that file or named pipe. The combmafiaOpen AndX
orNt Create AndX command with a chainedlose command, essentially opens and closes|the
named pipe in the same request and is anomalous behaviopr@pecessor will alert if it sees
this.

26 | The preprocessor will alert if it sees any of the invalid SMiaes configured. It looks for a
Tree Connect orTree Connect AndX to the share.

Connection-oriented DCE/RPC events
SID | Description

27 | The preprocessor will alert if the connection-oriented DRIEC major version contained in the
header is not equal to 5.

28 | The preprocessor will alert if the connection-oriented IRIEC minor version contained in the
header is not equal to 0.

29 | The preprocessor will alert if the connection-oriented BRIEC PDU type contained in the
header is not a valid PDU type.

30 | The preprocessor will alert if the fragment length definethanheader is less than the size of the
header.

31 | The preprocessor will alert if the remaining fragment lénigtless than the remaining packet
size.

32 | The preprocessor will alert if in Bind or Alter Context request, there are no context items
specified.

33 | The preprocessor will alertifinBind orAlter Context request, there are no transfer syntaxes
to go with the requested interface.

34 | The preprocessor will alert if a non-last fragment s lessitthe size of the negotiated maximym
fragment length. Most evasion techniques try to fragmeatdata as much as possible and
usually each fragment comes well below the negotiated nérssze.

35 | The preprocessor will alert if a fragment is larger than tteximum negotiated fragment length.

36 | The byte order of the request data is determined by the Bimdimection-oriented DCE/RPC
for Windows. It is anomalous behavior to attempt to changeblyte order mid-session.

90

37 | The call id for a set of fragments in a fragmented requestlglaiay the same (it is incremented
for each complete request). The preprocessor will alettiianges in a fragment mid-request.
38 | The operation number specifies which function the requestlimg on the bound interface. If
request is fragmented, this number should stay the sam# foragments. The preprocessor wil
alert if the opnum changes in a fragment mid-request.

39 | The contextid is a handle to a interface that was bound tord§aest if fragmented, this numb
should stay the same for all fragments. The preprocessbaleit if the context id changes in
fragment mid-request.

= D

1%
=

23]

Connectionless DCE/RPC events

| SID | Description |

40 | The preprocessor will alert if the connectionless DCE/RPHjomversion is not equal to 4.

41 | The preprocessor will alert if the connectionless DCE/RBTRype is not a valid PDU type.
42 | The preprocessor will alert if the packet data length is thas the size of the connectionless
header.
43 | The preprocessor will alert if the sequence number uses égaest is the same or less than a
previously used sequence number on the session. In testiagping the sequence number space
produces strange behavior from the server, so this shoutdisdered anomalous behavior.

Rule Options

New rule options are supported by enablingdberpc2 preprocessor:

dce_iface
dce_opnum
dce_stub_data

New modifiers to existingyte _test andbyte _jump rule options:

byte_test:dce
byte_jump:dce

dce _iface

For DCE/RPC based rules it has been necessary to set flowdsitsd on a client bind to a service to avoid
false positives. It is necessary for a client to bind to aiserbefore being able to make a call to it. When a
client sends a bind request to the server, it can, howevejfgpne or more service interfaces to bind to. Each
interface is represented by a UUID. Each interface UUID isguawith a unique index (or context id) that future
requests can use to reference the service that the clierakiihgna call to. The server will respond with the
interface UUIDs it accepts as valid and will allow the cliégmtmake requests to those services. When a client
makes a request, it will specify the context id so the sermemis what service the client is making a request
to. Instead of using flow-bits, a rule can simply ask the pyepssor, using this rule option, whether or not the
client has bound to a specific interface UUID and whether ditimis client request is making a request to it.
This can eliminate false positives where more than one®eisibound to successfully since the preprocessor
can correlate the bind UUID to the context id used in the rejuA DCE/RPC request can specify whether
numbers are represented as big endian or little endian. dpresentation of the interface UUID is different
depending on the endianness specified in the DCE/RPC psdyimguiring two rules - one for big endian and

91

one for little endian. The preprocessor eliminates the feetivo rules by normalizing the UUID. An interface
contains a version. Some versions of an interface may notilmerable to a certain exploit. Also, a DCE/RPC
request can be broken up into 1 or more fragments. Flags (Beld & the connectionless header) are set in the
DCE/RPC header to indicate whether the fragment is the éirstiddle or the last fragment. Many checks for
data in the DCE/RPC request are only relevant if the DCE/RRQest is a first fragment (or full request), since
subsequent fragments will contain data deeper into the REE/request. A rule which is looking for data,
say 5 bytes into the request (maybe it's a length field), wellldoking at the wrong data on a fragment other
than the first, since the beginning of subsequent fragmeatzlgeady offset some length from the beginning of
the request. This can be a source of false positives in fratpdedDCE/RPC traffic. By default it is reasonable
to only evaluate if the request is a first fragment (or fulluest). However, if thany _frag option is used to
specify evaluating on all fragments.

Syntax

dce_iface:<uuid>[, <operator><version>][, any_frag];

uuid = hexlong '-" hexshort - hexshort -* 2hexbyte -’ 6he xbyte
hexlong = 4hexbyte
hexshort = 2hexbyte
hexbyte = 2HEXDIGIT
operator =< | > | =T
version = 0-65535
Examples

dce_iface:4b324fc8-1670-01d3-1278-5a47hf6ee188;
dce_iface:4b324fc8-1670-01d3-1278-5a47hf6eel88, <2;
dce_iface:4b324fc8-1670-01d3-1278-5a47hf6ee188, any_ frag;
dce_iface:4b324fc8-1670-01d3-1278-5a47hf6eel88, =1, a ny_frag;

This option is used to specify an interface UUID. Optiongaments are an interface version and operator to
specify that the version be less thar:{j, greater than ('), equal to ('=") or not equal to ('!") the version
specified. Also, by default the rule will only be evaluatedddirst fragment (or full request, i.e. not a fragment)
since most rules are written to start at the beginning of aesfj Theany _frag argument says to evaluate for
middle and last fragments as well. This option requireskirecclientBind andAlter Context requests as
well as serveBind Ack andAlter Context responses for connection-oriented DCE/RPC in the prepsoce
For eachBind andAlter Context request, the client specifies a list of interface UUIDs alwiitlp a handle

(or context id) for each interface UUID that will be used aigrthe DCE/RPC session to reference the interface.
The server response indicates which interfaces it willvaltbe client to make requests to - it either accepts
or rejects the client’s wish to bind to a certain interfacénisTtracking is required so that when a request is
processed, the context id used in the request can be cedeléh the interface UUID it is a handle for.

hexlong andhexshort will be specified and interpreted to be in big endian ordeis (i usually the default
way an interface UUID will be seen and represented). As amel&, the following Messenger interface UUID
as taken off the wire from a little endiddind request:

[f8 91 7b 5a 00 ff d0 11 a9 b2 00 cO 4f b6 e6 fc|

must be written as:
5a7h91f8-ff00-11d0-a9b2-00c04th6ebfc

The same UUID taken off the wire from a big endBind request:
|5a 7b 91 f8 ff 00 11 dO a9 b2 00 cO 4f b6 e6 fc|

must be written the same way:

5a7h91f8-ff00-11d0-a9b2-00c04fb6ebfc

92

This option matches if the specified interface UUID matclhesinterface UUID (as referred to by the context
id) of the DCE/RPC request and if supplied, the version ammras true. This option will not match if the
fragment is not a first fragment (or full request) unlessame frag option is supplied in which case only the
interface UUID and version need match. Note that a defragedddCE/RPC request will be considered a full
request.

ANOTE

Using this rule option will automatically insert fast pattecontents into the fast pattern matcher. For UDP
rules, the interface UUID, in both big and little endian fatmvill be inserted into the fast pattern matchier.
For TCP rules, (1) if the rule optioffow:to _server|from _client is used|05 00 00 will be inserted into
the fast pattern matcher, (2) if the rule optitow:from _serverfto _client is used,|05 00 02 will be

inserted into the fast pattern matcher and (3) if the flowtiknown, |05 0Q will be inserted into the fast
pattern matcher. Note that if the rule already has contdatoptions in it, the best (meaning longest) pattern
will be used. If a content in the rule uses tlast _pattern rule option, it will unequivocally be used ove
the above mentioned patterns.

-

dce _opnum

The opnum represents a specific function call to an interfédeer is has been determined that a client has
bound to a specific interface and is making a request to itdbege -dce _iface) usually we want to know
what function call it is making to that service. It is likelyat an exploit lies in the particular DCE/RPC function
call.

Syntax

dce_opnum:<opnum-list>;

opnum-list = opnum-item | opnum-item ’;’ opnum-list
opnum-item = opnum | opnum-range
opnum-range = opnum -’ opnum
opnum = 0-65535
Examples

dce_opnum:15;
dce_opnum;15-18;
dce_opnum:15, 18-20;
dce_opnum:15, 17, 20-22;

This option is used to specify an opnum (or operation numlzgmum range or list containing either or both

opnum and/or opnum-range. The opnum of a DCE/RPC requddtevinatched against the opnums specified
with this option. This option matches if any one of the opnwapscified match the opnum of the DCE/RPC
request.

dce _stub _data

Since most netbios rules were doing protocol decoding anlyet to the DCE/RPC stub data, i.e. the remote
procedure call or function call data, this option will aliete this need and place the cursor at the beginning of
the DCE/RPC stub data. This reduces the number of rule optieoks and the complexity of the rule.

This option takes no arguments.
Example
dce_stub_data;
This option is used to place the cursor (used to walk the gamk@doad in rules processing) at the beginning

of the DCE/RPC stub data, regardless of preceding rule mgtidhere are no arguments to this option. This
option matches if there is DCE/RPC stub data.

93

byte _test andbyte _jump with dce

A DCE/RPC request can specify whether numbers are repezsimibig or little endian. These rule options will
take as a new argumedite and will work basically the same as the norrhgke _test /byte _jump, but since
the DCE/RPC preprocessor will know the endianness of theastqit will be able to do the correct conversion.

byte _test

Syntax
byte_test:<convert>, [!]<operator>, <value>, <offset> [, relative], dce;
convert =11 2] 4 (only with option "dce")
operator =< |’= | > & |7
value = 0 - 4294967295
offset = -65535 to 65535

Examples

byte_test:4, >, 35000, O, relative, dce;
byte_test:2, !=, 2280, -10, relative, dce;

When using thaelce argument to dyte _test , the following normabyte _test arguments will not be
allowed:big , little , string , hex, dec andoct .

byte _jump

Syntax

byte_jump:<convert>, <offset>[, relative][, multiplier <mult_value>] \
[, align][, post_offet <adjustment_value>], dce;

convert =11 2] 4 (only with option "dce")
offset = -65535 to 65535
mult_value =0 - 65535
adjustment_value = -65535 to 65535

Example
byte_jump:4,-4,relative,align,multiplier 2,post_offs et -4,dce;

When using thelce argument to dyte _jump, the following normabyte _jump arguments will not be
allowed:big , little , string , hex, dec, oct andfrom _beginning

Example of rule complexity reduction

The following two rules using the new rule options replacg€et and isset flowbit) rules that are necessary if
the new rule options are not used:

alert tcp $EXTERNAL_NET any -> $HOME_NET [135,139,445593 ,1024] \

(msg:"dns R_Dnssrv funcs2 overflow attempt"; flow:establ ished,to_server; \
dce_iface:50abc2a4-574d-40b3-9d66-ee4fd5fba076; dce_ opnum:0-11; dce_stub_data; \
pere:"/".{12}(\x00\x00\x00\x00|.{12})/sR"; byte_jump :4,-4 relative,align,dce; \
byte_test:4,>,256,4,relative,dce; reference:bugtrag, 23470; reference:cve,2007-1748; \

classtype:attempted-admin; sid:1000068;)

alert udp $EXTERNAL_NET any -> $HOME_NET [135,1024] \

(msg:"dns R_Dnssrv funcs2 overflow attempt"; flow:establ ished,to_server; \
dce_iface:50abc2a4-574d-40b3-9d66-ee4fd5fba076; dce_ opnum:0-11; dce_stub_data; \
pere:"/".{12}(\x00\x00\x00\x00|.{12})/sR"; byte_jump :4,-4 relative,align,dce; \
byte_test:4,>,256,4,relative,dce; reference:bugtrag, 23470; reference:cve,2007-1748; \

classtype:attempted-admin; sid:1000069;)

2.2.14 Sensitive Data Preprocessor

The Sensitive Data preprocessor is a Snort module that ppesfdetection and filtering of Personally Identifiable
Information (PII). This information includes credit cardmbers, U.S. Social Security numbers, and email addresses.

A limited regular expression syntax is also included formiefy your own PII.

94

Dependencies

The Stream5 preprocessor must be enabled for the Sens#ieePeprocessor to work.

Preprocessor Configuration

Sensitive Data configuration is split into two parts: thepgooeessor config, and the rule options. The preprocessor
config starts with:

preprocessor sensitive_data:

Option syntax

| Option | Argument | Required| Default
alert _threshold <number> NO alert _threshold 25
mask_output NONE NO OFF
ssn _file <filename> NO OFF
alert_threshold = 1 - 65535

Option explanations

alert _threshold

The preprocessor will alert when any combination of Pll agtedted in a session. This option specifies
how many need to be detected before alerting. This shouldtid@gher than the highest individual count
in your "sd. pattern” rules.

mask_output

This option replaces all but the last 4 digits of a detectddvith "X"s. This is only done on credit card &
Social Security numbers, where an organization’s reqarigtmay prevent them from seeing unencrypted
numbers.

ssn _file

A Social Security number is broken up into 3 sections: Aredifts), Group (2 digits), and Serial (4
digits). On a monthly basis, the Social Security Administrapublishes a list of which Group numbers
are in use for each Area. These numbers can be updated int8nsupplying a CSV file with the new
maximum Group numbers to use. By default, Snort recogniaemBSecurity numbers issued up through
November 2009.

Example preprocessor config

preprocessor sensitive_data: alert_threshold 25 \
mask_output \
ssn_file ssn_groups_Jan10.csv

Rule Options

Snort rules are used to specify which PIl the preprocessmuldiook for. A new rule option is provided by the
preprocessor:

sd_pattern

95

This rule option specifies what type of Pll a rule should dietec

Syntax

sd_pattern:<count>, <pattern>;

count =1 - 255
pattern = any string

Option Explanations

count

This dictates how many times a PIl pattern must be matchedrfalert to be generated. The count is
tracked across all packets in a session.

pattern

This is where the pattern of the PII gets specified. There & &uilt-in patterns to choose from:
credit _card

The "creditcard” pattern matches 15- and 16-digit credit card numb@&isse numbers may
have spaces, dashes, or nothing in between groups. Thisscdiga, Mastercard, Discover, and
American Express. Credit card numbers matched this way tha@iecheck digits verified using
the Luhn algorithm.

us _social

This pattern matches against 9-digit U.S. Social Secutitylpers. The SSNs are expected to
have dashes between the Area, Group, and Serial sections.
SSNs have no check digits, but the preprocessor will chedkhrea against the list of currently
allocated group numbers.

us_social _nodashes
This pattern matches U.S. Social Security numbers withashds separating the Area, Group,
and Serial sections.

email
This pattern matches against email addresses.

If the pattern specified is not one of the above built-in pagethen it is the definition of a custom PII
pattern. Custom PII types are defined using a limited reggr-syntax. The following special characters
and escape sequences are supported:

\d matches any digit

\D matches any non-digit

\l matches any letter

\L matches any non-letter

\w matches any alphanumeric character

\W | matches any non-alphanumeric character
{num} | used to repeat a character or escape sequence "num” timaspkx
"{3}" matches 3 digits.
? makes the previous character or escape sequence optigaaipke: ”
?” matches an optional space. This behaves in a greedy manner
\\ matches a backslash

\{,\} | matcheq and}

\? | matches a question mark.
Other characters in the pattern will be matched literally.

ANOTE

‘ Unlike PCRE,\win this rule option does NOT match underscores.

96

Examples
sd_pattern: 2,us_social;

Alerts when 2 social security numbers (with dashes) appeasession.
sd_pattern: 5,(\d{3h\d{3}-\d{4};

Alerts on 5 U.S. phone numbers, following the format (1284890
Whole rule example:

alert tcp SHOME_NET $HIGH_PORTS -> $EXTERNAL_NET $SMTP_P@®TS \
(msg:"Credit Card numbers sent over email”; gid:138; sid:1 000; rev:1; \
sd_pattern:4,credit_card; metadata:service smtp;)

Caveats

sd _pattern is not compatible with other rule options. Trying to use othde options withsd _pattern
will result in an error message.
Rules usingd _pattern must use GID 138.

2.2.15 Normalizer

When operating Snort in inline mode, it is helpful to normalpackets to help minimize the chances of evasion.

To enable the normalizer, use the following when configu8ngrt:
Jconfigure --enable-normalizer

The normalize preprocessor is activated via the conf agnedtbelow. There are also many new preprocessor and
decoder rules to alert on or drop packets with "abnormalbelimgs.

Note that in the following, fields are cleared only if they a@n-zero. Also, normalizations will only be enabled if
the selected DAQ supports packet replacement and is opgtatinline mode.

If a policy is configured foiinline _test or passive mode, any normalization statements in the pobcyig are
ignored.

IP4 Normalizations
IP4 normalizations are enabled with:
preprocessor normalize_ip4: [df], [rf], [tos], [trim]
Base normalizations enabled with "preproceseomalize _ip4 " include:

e TTL normalization if enabled (explained below).

e NOP all options octets.
Optional normalizations include:

e df don’t fragment: clear this bit on incoming packets.
e 1f reserved flag: clear this bit on incoming packets.
e tos type of service (differentiated services) field: clear thyse.

e trim truncate packets with excess payload to the datagram Ispgttified in the IP header + the layer 2 header
(eg ethernet), but don’t truncate below minimum frame langtis is automatically disabled if the DAQ can't
inject packets.

97

IP6 Normalizations

IP6 normalizations are enabled with:
preprocessor normalize_ip6
Base normalizations enabled with "preproceseomalize _ip6 " include:

e Hop limit normalizaton if enabled (explained below).

e NOP all options octets in hop-by-hop and destination otiextension headers.

ICMP4/6 Normalizations

ICMP4 and ICMP6 normalizations are enabled with:

preprocessor normalize_icmp4
preprocessor normalize_icmp6

Base normalizations enabled with the above include:

e Clear the code field in echo requests and replies.

TCP Normalizations

TCP normalizations are enabled with:

preprocessor normalize_tcp: \
[ips] [urp] \
[ecn <ecn_type>], \
[opts [allow <allowed_opt>+]]

<ecn_type> ::= stream | packet

<allowed_opt> =\
sack | echo | partial_order | conn_count | alt checksum | md5

<sack> :
<echo> :=
<partial_order> 9, 10 }
<conn_count> == { 11, 12, 13}
<alt_checksum> := { 14, 15 }
<md5> = { 19 }

<num> ;= (3..255)

{45}
{67}
= {

Base normalizations enabled with "preproceseomalize _tcp " include:

e Remove data on SYN.
e Clear the reserved bits in the TCP header.
e Clear the urgent pointer if the urgent flag is not set.

e Clear the urgent pointer and the urgent flag if there is noqad/l

98

<num>

Set the urgent pointer to the payload length if it is gredtantthe payload length.

Clear the urgent flag if the urgent pointer is not set.

Clear any option padding bytes.

Remove any data from RST packet.

Trim data to window.

Trim data to MSS.

Optional normalizations include:

e ips
ensure consistency in retransmitted data (also forceserdsy policy to "first”). Any segments that can’t be
properly reassembled will be dropped.

e Uurp
urgent pointer: don't adjust the urgent pointer if it is gerahan payload length.

e ecn packet
clear ECN flags on a per packet basis (regardless of negutjati

e ecn stream
clear ECN flags if usage wasn’t negotiated. Should also emedplire _3whs.
e Opts

NOP all option bytes other than maximum segment size, wirgl@ding, timestamp, and any explicitly allowed
with the allow keyword. You can allow options to pass by namewmber.

e 0Opts
if timestamp is present but invalid, or valid but not negtatih NOP the timestamp octets.

e Opts
if timestamp was negotiated but not present, block the gacke

e Opts
clear TS ECR if ACK flag is not set.

e Opts
MSS and window scale options are NOP’d if SYN flag is not set.

e Opts
trim payload length to MSS if longer.
TTL Normalization
TTL normalization pertains to both IP4 TTL (time-to-livehé IP6 (hop limit) and is only performed if both the

relevant base normalization is enabled (as described abhadghe minimum and new TTL values are configured, as
follows:

config min_ttl: <min_ttl>
config new_ttl: <new_ttl>

<min_ttl> = (1..255)
<new_ttl> ::= (<min_tt>+1..255)

99

If new_ttt ¢min_ttl , then if a packetis received with a TTlmin _ttl , the TTL will be set tanew_ttl

Note that this configuration item was deprecated in 2.8.6:
preprocessor stream5_tcp: min_ttl <#>

By defaultmin_ttl =1 (TTL normalization is disabled). When TTL normalizatisrturned on theew_ttl is set to
5 by default.

2.3 Decoder and Preprocessor Rules

Decoder and preprocessor rules allow one to enable andl@idaboder and preprocessor events on a rule by rule
basis. They also allow one to specify the rule type or actfemaecoder or preprocessor event on a rule by rule basis.

Decoder config options will still determine whether or notgenerate decoder events. For examplepoiffig
disable _decode _alerts is insnort.conf , decoder events will not be generated regardless of whethest there
are corresponding rules for the event. Also note that if theoder is configured to enable drops, eanfig
enable _decode _drops , these options will take precedence over the event typeeofitle. A packet will be dropped
if either a decoder config drop option issnort.conf ~ or the decoder or preprocessor rule typédrap . Of course,
the drop cases only apply if Snort is running inline. 8e#README.decode for config options that control decoder
events.

2.3.1 Configuring

The following options to configure will enable decoder anegrocessor rules:
$./configure --enable-decoder-preprocessor-rules

The decoder and preprocessor rules are located iprédpeoc _rules/ directory in the top level source tree, and
have the namedecoder.rules andpreprocessor.rules respectively. These files are updated as new decoder and
preprocessor events are added to Snort.gEhansg.map underetc directory is also updated with new decoder and
preprocessor rules.

To enable these rules snort.conf , define the path to where the rules are located and uncomhentltide lines
in snort.conf that reference the rules files.

var PREPROC_RULE_PATH /path/to/preproc_rules

include $PREPROC_RULE_PATH/preprocessor.rules
include $PREPROC_RULE_PATH/decoder.rules

To disable any rule, just comment it with#aor remove the rule completely from the file (commenting isorae
mended).

To change the rule type or action of a decoder/preprocesnrjust replacalert with the desired rule type. Any
one of the following rule types can be used:

alert
log
pass
drop
sdrop
reject

For example one can change:

100

alert (msg: "DECODE_NOT_IPV4 DGRAM"; sid: 1; gid: 116; rev LN

metadata: rule-type decode ; classtype:protocol-command -decode;)
to
drop (msg: "DECODE_NOT_IPV4 DGRAM" sid: 1; gid: 116; rev: 10\
metadata: rule-type decode ; classtype:protocol-command -decode;)

to drop (as well as alert on) packets where the Ethernet gobie IPv4 but version field in IPv4 header has a value
other than 4.

SeeREADME.decode, README.gre and the various preprocessor READMESs for descriptionsefiles irdecoder.rules
andpreprocessor.rules

The generator ids (gid) for different preprocessors andléo®der are as follows:

Generator Id | Module

105 Back Orifice preprocessor
106 RPC Decode preprocessor
112 Arpspoof preprocessor

116 Snort Decoder

119 HTTP Inspect preprocessor (Client|)
120 HTTP Inspect preprocessor (Server)
122 Portscan preprocessor

123 Frag3 preprocessor

124 SMTP preprocessor

125 FTP (FTP) preprocessor
126 FTP (Telnet) preprocessor
127 ISAKMP preprocessor

128 SSH preprocessor

129 Stream5 preprocessor

131 DNS preprocessor

132 Skype preprocessor

133 DceRpc2 preprocessor
134 PPM preprocessor

137 SSL preprocessor

139 SDF preprocessor

2.3.2 Reverting to original behavior

If you have configured snort to use decoder and preproceskas; the following config option isnort.conf will
make Snort revert to the old behavior:

config autogenerate_preprocessor_decoder_rules

Note that if you want to revert to the old behavior, you alseeh® remove the decoder and preprocessor rules and
any reference to them froemort.conf , otherwise they will be loaded. This option applies to rulesspecified and
the default behavior is to alert.

2.4 Event Processing

Snort provides a variety of mechanisms to tune event prowess suit your needs:

101

e Detection Filters

You can use detection filters to specify a threshold that inegtxceeded before a rule generates an event. This
is covered in section 3.7110.

e Rate Filters
You can use rate filters to change a rule action when the nuarnbiate of events indicates a possible attack.

e Event Filters

You can use event filters to reduce the number of logged ef@ntsisy rules. This can be tuned to significantly
reduce false alarms.

e Event Suppression
You can completely suppress the logging of uninterstingnsze

2.4.1 Rate Filtering

rate filter provides rate based attack prevention by allowing userenifigure a new action to take for a specified
time when a given rate is exceeded. Multiple rate filters cardé&fined on the same rule, in which case they are
evaluated in the order they appear in the configuration fild,the first applicable action is taken.

Format

Rate filters are used as standalone configurations (outsaeute) and have the following format:

rate_filter \
gen_id <gid>, sig_id <sid>, \
track <by_srclby_dst|by rule>, \
count <c>, seconds <s>, \
new_action alert|drop|pass|log|sdrop|reject, \
timeout <seconds> \
[, apply_to <ip-list>]

The options are described in the table below - all are reduéxeeptpply _to , which is optional.

Examples

Example 1 - allow a maximum of 100 connection attempts peorsé&érom any one IP address, and block further
connection attempts from that IP address for 10 seconds:

rate_filter \
gen_id 135, sig_id 1, \
track by src, \
count 100, seconds 1, \
new_action drop, timeout 10

Example 2 - allow a maximum of 100 successful simultaneonsections from any one IP address, and block further
connections from that IP address for 10 seconds:

rate_filter \
gen_id 135, sig_id 2, \
track by src, \
count 100, seconds O, \
new_action drop, timeout 10

102

Option Description

track by _src | by _dst | rate is tracked either by source IP address, destinatioddReas, or by
by _rule rule. This means the match statistics are maintained fon eacue
source IP address, for each unique destination IP addreslsey are
aggregated at rule level. For rules related to Stream5@esssource
and destination means client and server respectiviedgk by _rule
andapply _to may not be used together.

count ¢ the maximum number of rule matchessirseconds before the rate filter
limit to is exceededc must be nonzero value.
seconds s the time period over whicbount is accrued. 0 seconds meawsnt is

a total count instead of a specific rate. For exampale, _filter ~ may

be used to detect if the number of connections to a specifiesekceed
a specific count. 0 seconds only applies to internal rules {@é 35) and
other use will produce a fatal error by Snort.

new_action alert | drop | new_action replaces rule action for seconds. drop , reject , and

pass | log | sdrop | reject sdrop can be used only when snort is used in inline mostieop and
reject are conditionally compiled with GIDS.

timeout t revert to the original rule action aftér seconds. Ift is O, then rule

action is never reverted back. Ament _filter ~ may be used to manade
number of alerts after the rule action is enabledaby filter
apply _to <ip-list> restrict the configuration to only to source or destinatiBratidress (in-
dicated by track parameter) determineddylist> . track by _rule
andapply _to may not be used together. Note that events are ggner-
ated during the timeout period, even if the rate falls beloa/donfigured
limit.

2.4.2 Event Filtering

Event filtering can be used to reduce the number of loggedsdier noisy rules by limiting the number of times a
particular event is logged during a specified time interVais can be tuned to significantly reduce false alarms.

There are 3 types of event filters:

o limit
Alerts on the 1sin events during the time interval, then ignores events fordiseof the time interval.

e threshold
Alerts everymtimes we see this event during the time interval.

e hoth

Alerts once per time interval after seeingoccurrences of the event, then ignores any additional swikning
the time interval.

Format

event_filter \
gen_id <gid>, sig_id <sid>, \
type <limit|threshold|both>, \
track <by_srclby_dst>, \
count <c>, seconds <s>

threshold \
gen_id <gid>, sig_id <sid>, \
type <limit|threshold|both>, \
track <by_srclby_dst>, \

103

count <c>, seconds <s>

threshold is an alias forvent _filter . Both formats are equivalent and support the options desddelow - all
are requiredthreshold is deprecated and will not be supported in future releases.

Option Description

gen_id <gid> Specify the generator ID of an associated rgen_id 0, sig _id 0 can be used
to specify a "global” threshold that applies to all rules.

sig _id <sid> Specify the signature ID of an associated rglg._id 0 specifies a "global” filter
because it applies to aig _id s for the givergen_id .

type limit|threshold|both typelimit alerts on the 1st m events during the time interval, thenrgmevents

for the rest of the time interval. Typtreshold alerts every m times we see
this event during the time interval. Tyeth alerts once per time interval afte
seeing m occurrences of the event, then ignores any adaligeents during the
time interval.

track by _srclby _dst rate is tracked either by source IP address, or destindfi@utiress. This means
count is maintained for each unique source IP addresses, eath unique desti
nation IP addresses. Ports or anything else are not tracked.

=

count ¢ number of rule matching in s seconds that will caegent _filter limit to be
exceededc must be nonzero value.
seconds s time period over whicltount is accrueds must be nonzero value.
I
ANOTE

Only oneevent filter ~ may be defined for a givegen_id, sig _id . If more than onevent filter is
applied to a specifigen _id, sig _id pair, Snort will terminate with an error while reading thenfiguration
information.

event filter s withsig _id O are considered "global” because they apply to all rule$ whe givengen_id . If
gen_id is also 0, then the filter applies to all rulegerf_id 0, sig _id != 0 is not allowed). Standard filtering tests
are applied first, if they do not block an event from being ledigthe global filtering test is applied. Thresholds in a
rule (deprecated) will override a globalent filter . Globalevent _filter s do not override what's in a signature
or a more specific stand-aloaeent _filter

\NOTE

event filters can be used to suppress excesste filter alerts, however, the firsew_action event
of the timeout period is never suppressed. Such eventsaitedécchange of state that are significant to the
user monitoring the network.

Examples
Limit logging to 1 event per 60 seconds:

event_filter \
gen_id 1, sig_id 1851, \
type limit, track by src, \
count 1, seconds 60

Limit logging to every 3rd event:
event_filter \
gen_id 1, sig_id 1852, \

type threshold, track by src, \
count 3, seconds 60

104

Limit logging to just 1 event per 60 seconds, but only if weeed 30 events in 60 seconds:

event filter \
gen_id 1, sig_id 1853, \
type both, track by src, \
count 30, seconds 60

Limit to logging 1 event per 60 seconds per IP triggering eabd (rule genid is 1):

event filter \
gen_id 1, sig_id 0, \
type limit, track by src, \
count 1, seconds 60

Limit to logging 1 event per 60 seconds per IP, triggeringheade for each event generator:

event_filter \
gen_id 0, sig_id 0, \
type limit, track by src, \
count 1, seconds 60

Events in Snort are generated in the usual way, event fililerdiandled as part of the output system. Read gen-
msg.map for details on gen ids.

Users can also configure a memcap for threshold with a “cdrdjgtion:

config event filter: memcap <bytes>

this is deprecated:
config threshold: memcap <bytes>

2.4.3 Event Suppression

Event suppression stops specified events from firing withembving the rule from the rule base. Suppression uses
an IP. list to select specific networks and users for suppesSiuppression tests are performed prior to either standar
or global thresholding tests.

Suppression are standalone configurations that referemezafors, SIDs, and IP addresses via an IP list. This allows
a rule to be completely suppressed, or suppressed whenuhkatis@ traffic is going to or coming from a specific IP
or group of IP addresses.

You may apply multiple suppressions to a non-zero SID. Yo @lao combine onevent _filter and several
suppressions to the same non-zero SID.

Format

The suppress configuration has two forms:

suppress \
gen_id <gid>, sig_id <sid>, \

suppress \
gen_id <gid>, sig_id <sid>, \
track <by srclby_dst>, ip <ip-list>

105

Option Description

gen_id <gid> Specify the generator ID of an associated rgks_id 0, sig _id 0 can be used
to specify a "global” threshold that applies to all rules.
sig _id <sid> Specify the signature ID of an associated rglg._id 0 specifies a "global” filter

because it appliesto aig -id s for the givergen_id .
track by _srclby _dst | Suppress by source IP address or destination IP addressisTdyptional, but if
presentip must be provided as well.

ip <list> Restrict the suppression to only source or destination thesdes (indicated by
track parameter) determined by jlist¢,. If track is provided, ipstrhe provided
as well.
Examples

Suppress this event completely:

suppress gen_id 1, sig_id 1852:
Suppress this event from this IP:

suppress gen_id 1, sig_id 1852, track by src, ip 10.1.1.54
Suppress this event to this CIDR block:

suppress gen_id 1, sig_id 1852, track by dst, ip 10.1.1.0/2 4

2.4.4 Event Logging

Snort supports logging multiple events per packet/stréendre prioritized with different insertion methods, sash
max content length or event ordering using the event queue.

The general configuration of the event queue is as follows:
config event_queue: [max_queue [size]] [log [size]] [orde r_events [TYPE]]

Event Queue Configuration Options There are three configuration options to the configuratioarpater 'eventjueue’.
1. maxqueue

This determines the maximum size of the event queue. Forgiearhthe event queue has a max size of 8, only
8 events will be stored for a single packet or stream.

The default value is 8.

2. log

This determines the number of events to log for a given pamk&tream. You can’t log more than the mewent
number that was specified.

The default value is 3.

3. order _events

This argument determines the way that the incoming eventsralered. We currently have two different meth-
ods:

e priority - The highest priority (1 being the highest) events are adérst.

106

e content _length - Rules are ordered before decode or preprocessor aledsubas that have a longer
content are ordered before rules with shorter contents.

The method in which events are ordered does not affect rpkstguch as pass, alert, log, etc.
The default value is conteténgth.

Event Queue Configuration Examples The default configuration:

config event_queue: max_queue 8 log 3 order_events content _length
Example of a reconfigured event queue:

config event_queue: max_queue 10 log 3 order_events conten t length
Use the default event queue values, but change event order:

config event_queue: order_events priority
Use the default event queue values but change the numbeggddcevents:

config event_queue: log 2

2.5 Performance Profiling

Snort can provide statistics on rule and preprocessor pediace. Each require only a simplenfig option to
snort.conf and Snort will print statistics on the worst (or all) perfara on exit. When a file name is provided in
profile _rules or profile _preprocs , the statistics will be saved in these files.append is not specified, a new
file will be created each time Snort is run. The filenames valldhtimestamps appended to them. These files will be
found in the logging directory.

To use this feature, you must build snort with themable-perfprofiling option to the configure script.

2.5.1 Rule Profiling
Format

config profile_rules: \
print [all | <num>], \
sort <sort_option> \
[flename <filename> [append]]

e <num>is the number of rules to print

e <sort _option> is one of:
checks
matches
nomatches
avg _ticks
avg _ticks _per _match
avg _ticks _per _nomatch
total _ticks

o <filename> s the output filename

e [append] dictates that the output will go to the same file each timeidopt)

107

Rule Profile Statistics (worst 4 rules)

Num SID GID Rev Checks Matches Alerts Ticks Avg/Check Avg/Ma tch Avg/Nonmatch
1 2389 1 12 1 1 1 385698 385698.0 385698.0 0.0
2 2178 1 17 2 0 0 107822 53911.0 0.0 53911.0
3 2179 1 8 2 0 0 92458 46229.0 0.0 46229.0
4 1734 1 37 2 0 0 90054 45027.0 0.0 45027.0

Figure 2.1: Rule Profiling Example Output

Examples

e Print all rules, sort by avdicks (default configuration if option is turned on)
config profile _rules

Print all rules, sort by avgicks, and append to fileles _stats.txt
config profile _rules: filename rules _stats.txt append

e Print the top 10 rules, based on highest average time
config profile _rules: print 10, sort avg _ticks

Print all rules, sorted by number of checks
config profile _rules: print all, sort checks

Print top 100 rules, based on total time
config profile _rules: print 100, sort total _ticks

o Print with default options, save results to performan¢each time
config profile _rules: filename performance.txt append

Print top 20 rules, save results to perf.txt with timestamfilename
config profile _rules: print 20, filename perf.txt

Output

Snort will print a table much like the following at exit.
Configuration line used to print the above table:
config profile _rules: print 4, sort total _ticks

The columns represent:

e Number (rank)

e SigID

e Generator ID

e Checks (number of times rule was evaluated after fast patt@tch within portgroup or any-any rules)
e Matches (number of times ALL rule options matched, will bgthfor rules that have no options)

o Alerts (humber of alerts generated from this rule)

e CPU Ticks

e Avg Ticks per Check

e Avg Ticks per Match

108

e Avg Ticks per Nonmatch

Interpreting this info is the key. The Microsecs (or Ticksjumn is important because that is the total time spent
evaluating a given rule. But, if that rule is causing aldttsjakes sense to leave it alone.

A high Avg/Check is a poor performing rule, that most likelygntains PCRE. High Checks and low Avg/Check is
usually an any=any rule with few rule options and no content. Quick to chéio& few options may or may not match.
We are looking at moving some of these into code, espectatlyda with low SIDs.

By default, this information will be printed to the consolé@n Snort exits. You can use the "filename” option in
snort.conf to specify a file where this will be written. If Ja@nd” is not specified, a new file will be created each time
Snortis run. The filenames will have timestamps appenddtktot These files will be found in the logging directory.

2.5.2 Preprocessor Profiling
Format
config profile_preprocs: \
print [all | <num>], \

sort <sort_option> \
[, filename <filename> [append]]

<num> is the number of preprocessors to print

<sort _option> is one of:

checks
avg _ticks
total _ticks

<filename> s the output filename

[append] dictates that the output will go to the same file each timei¢ojad)

Examples

e Print all preprocessors, sort by atigks (default configuration if option is turned on)

config profile _preprocs

e Print all preprocessors, sort by atigks, and append to filereprocs _stats.txt
config profile _preprocs: filename preprocs _stats.txt append

e Print the top 10 preprocessors, based on highest average tim
config profile _preprocs; print 10, sort avg _ticks

e Print all preprocessors, sorted by number of checks
config profile _preprocs: print all, sort checks

Output

Snort will print a table much like the following at exit.

Configuration line used to print the above table:

config profile_rules: \
print 3, sort total_ticks

109

Preprocessor Profile Statistics (all)

Num

1

2

1
1

coO~NO O WwWwN -

2

2

Preprocessor Layer Checks Exits
ftptelnet_ftp 0 2697 2697
detect 0 930237 930237
rule eval 1 1347969 1347969
rule tree eval 2 1669390 1669390
pcre 3 488652 488652
asnl 3 1 1
uricontent 3 647122 647122
content 3 1043099 1043099
ftpbounce 3 23 23
byte_jump 3 9007 9007
byte_test 3 239015 239015
icmp_seq 3 2 2
fragbits 3 65259 65259
isdataat 3 5085 5085
flags 3 4147 4147
flowbits 3 2002630 2002630
ack 3 4042 4042
flow 3 1347822 1347822
icode 3 75538 75538
itype 3 27009 27009
icmp_id 3 41150 41150
ip_proto 3 142625 142625
ipopts 3 13690 13690
rtn eval 2 55836 55836
mpse 1 492836 492836
frag3 0 76925 76925
frag3insert 1 70885 70885
frag3rebuild 1 5419 5419
dcerpc 0 127332 127332
s5 0 809682 809682
sbtcp 1 765281 765281
s5TcpState 2 742464 742464
s5TcpFlush 3 51987 51987
1 s5TcpProcessRebuilt 4 47355 47355
2 s5TcpBuildPacket 4 47360 47360
s5TcpData 3 250035 250035
1 s5TcpPktinsert 4 88173 88173
s5TcpNewSess 2 60880 60880
eventq 0 2089428 2089428
httpinspect 0 296030 296030
smtp 0 137653 137653
decode 0 1057635 1057635
ftptelnet_telnet 0 175 175
sfportscan 0 881153 881153
backorifice 0 35369 35369
dns 0 16639 16639
total 0 1018323 1018323

Microsecs Avg/Check Pc

t of Caller Pct of Total

135720
31645670
26758596
26605086
18994719
8
2638614
3154396
19
3321
64401
0
10168
757
517
212231
261
79002
4280
1524
1618
5004
457
22763
4135697
1683797
434980
6280
2426830
14195602
14128577
13223585
92918
14548497
41711
141490
110136
81779
26690209
1862359
227982
1162456
175
518655
4875
1346
67046412

50.32

34.02
19.85
15.94
38.87
8.56
4.08
3.02
0.87
0.37
0.27
0.16
0.16
0.15
0.12
0.11
0.06
0.06
0.06
0.06
0.04
0.04
0.03
041
8.39
21.89
6.14
1.16
19.06
17.53
18.46
17.81
1.79
307.22
0.88
0.57
1.25
1.34
12.77
6.29
1.66
1.10
1.00
0.59
0.14
0.08
65.84

0.20
47.20
84.56
99.43
71.40
0.00
9.92
11.86
0.00
0.01
0.24
0.00
0.04
0.00
0.00
0.80
0.00
0.30
0.02
0.01
0.01
0.02
0.00
0.09
13.07
251
25.83
0.37
3.62
21.17
99.53
93.59
0.70
15657.
44.89
1.07
77.84
0.58
39.81
2.78
0.34
1.73
0.00
0.77
0.01
0.00
0.00

Figure 2.2: Preprocessor Profiling Example Output

110

0.20
47.20
39.91
39.68
28.33
0.00
3.94
4.70
0.00
0.00
0.10
0.00
0.02
0.00
0.00
0.32
0.00
0.12
0.01
0.00
0.00
0.01
0.00
0.03
6.17
251
0.65
0.01
3.62
21.17
21.07
19.72
0.14
21.70
0.06
0.21
0.16
0.12
39.81
2.78
0.34
1.73
0.00
0.77
0.01
0.00

The columns represent:

e Number (rank) - The number is indented for each layer. Laymreprocessors are listed under their respective
caller (and sorted similarly).

e Preprocessor Name

e Layer - When printing a specific number of preprocessorsuditasks info for a particular preprocessor is
printed for each layer O preprocessor stat.

e Checks (number of times preprocessor decided to look atlkepaiorts matched, app layer header was correct,
etc)

e Exits (number of corresponding exits — just to verify codéistrumented correctly, should ALWAYS match
Checks, unless an exception was trapped)

e CPU Ticks
e Avg Ticks per Check

e Percent of caller - For non layer O preprocessors, i.e. suimes within preprocessors, this identifies the percent
of the caller’s ticks that is spent for this subtask.

Because of task swapping, non-instrumented code, and fattters, the Pct of Caller field will not add up to 100%
of the caller’s time. It does give a reasonable indicatiohaf much relative time is spent within each subtask.

By default, this information will be printed to the consolé@n Snort exits. You can use the "filename” option in
snort.conf to specify a file where this will be written. If Ja@nd” is not specified, a new file will be created each time
Snortis run. The filenames will have timestamps appenddtktot These files will be found in the logging directory.

2.5.3 Packet Performance Monitoring (PPM)

PPM provides thresholding mechanisms that can be used vadpra basic level of latency control for snort. It does

not provide a hard and fast latency guarantee but shouldectgfrovide a good average latency control. Both rules
and packets can be checked for latency. The action taken dgteation of excessive latency is configurable. The
following sections describe configuration, sample outantl some implementation details worth noting.

To use PPM, you must build with the —enable-ppm or the —ersdoliecefire option to configure.

PPM is configured as follows:

Packet configuration:;

config ppm: max-pkt-time <micro-secs>, \
fastpath-expensive-packets, \
pkt-log, \
debug-pkts

Rule configuration:

config ppm: max-rule-time <micro-secs>, \
threshold count, \
suspend-expensive-rules, \
suspend-timeout <seconds>, \
rule-log [log] [alert]

Packets and rules can be configured separately, as abougetinér in just one config ppm statement. Packet and rule
monitoring is independent, so one or both or neither may bbled.

111

Configuration

Packet Configuration Options

max-pkt-time <micro-secs>

e enables packet latency thresholding using 'micros-sectialimit.
o defaultis 0 (packet latency thresholding disabled)
e reasonable starting defaults: 100/250/1000 for 1G/100MiBts

fastpath-expensive-packets

e enables stopping further inspection of a packet if the ntar fis exceeded

o defaultis off
pkt-log

e enables logging packet event if packet exceeds max-pld-tim
e logging is to syslog or console depending upon snort cordiim

e defaultis no logging
debug-pkts

e enables per packet timing stats to be printed after eachepack

o default is off

Rule Configuration Options

max-rule-time <micro-secs>

e enables rule latency thresholding using 'micros-secshadimit.
e defaultis 0 (rule latency thresholding disabled)

e reasonable starting defaults: 100/250/1000 for 1G/100MiBts
threshold <count>

e sets the number of cumulative rule time excesses beforblitiga rule

e defaultis 5
suspend-expensive-rules

e enables suspending rule inspection if the max rule timedéseded

e defaultis off
suspend-timeout <seconds>

e rule suspension time in seconds
e defaultis 60 seconds

e set to zero to permanently disable expensive rules

112

rule-log [log] [alert]

e enables event logging output for rules
e defaultis no logging
e one or both of the options 'log’ and 'alert’ must be used withé-log’

¢ the log option enables output to syslog or console depenging snort configuration

Examples

Example 1: The following enables packet tracking:
config ppm: max-pkt-time 100

The following enables rule tracking:
config ppm: max-rule-time 50, threshold 5

If fastpath-expensive-packets or suspend-expensiess-isiinot used, then no action is taken other than to increment
the count of the number of packets that should be fastpatttigeorules that should be suspended. A summary of this
information is printed out when snort exits.

Example 2:

The following suspends rules and aborts packet inspeclibase rules were used to generate the sample output that
follows.

config ppm: \
max-pkt-time 50, fastpath-expensive-packets, \
pkt-log, debug-pkt

config ppm: \

max-rule-time 50, threshold 5, suspend-expensive-rules, \
suspend-timeout 300, rule-log log alert

Sample Snort Output

Sample Snort Startup Output

Packet Performance Monitor Config:
ticks per usec : 1600 ticks
max packet time : 50 usecs

packet action : fastpath-expensive-packets
packet logging : log
debug-pkts . disabled

Rule Performance Monitor Config:
ticks per usec : 1600 ticks
max rule time : 50 usecs
rule action . suspend-expensive-rules
rule threshold : 5
suspend timeout : 300 secs
rule logging . alert log

113

Sample Snort Run-time Output

PPM: Process-BeginPkt[61] caplen=60
PPM: Pkt[61] Used= 8.15385 usecs
PPM: Process-EndPki[61]

PPM: Process-BeginPkt[62] caplen=342
PPM: Pkt[62] Used= 65.3659 usecs
PPM: Process-EndPki[62]

PPM: Pkt-Event Pki[63] used=56.0438 usecs, 0 rules, 1 nc-ru les tested, packet fastpathed.
PPM: Process-BeginPkt[63] caplen=60

PPM: Pkt[63] Used= 8.394 usecs

PPM: Process-EndPki[63]

PPM: Process-BeginPkt[64] caplen=60
PPM: Pkt[64] Used= 8.21764 usecs
PPM: Process-EndPkt[64]

Sample Snort Exit Output

Packet Performance Summary:

max packet time : 50 usecs

packet events 01

avg pkt time : 0.633125 usecs
Rule Performance Summary:

max rule time : 50 usecs

rule events : 0

avg nc-rule time . 0.2675 usecs

Implementation Details

e Enforcement of packet and rule processing times is done pfteessing each rule. Latency control is not
enforced after each preprocessor.

e This implementation is software based and does not use amupt driven timing mechanism and is therefore
subject to the granularity of the software based timingsteBtie to the granularity of the timing measurements
any individual packet may exceed the user specified packel®processing time limit. Therefore this imple-
mentation cannot implement a precise latency guarantéestvitt timing guarantees. Hence the reason this is
considered a best effort approach.

e Since this implementation depends on hardware based hifdrpance frequency counters, latency threshold-
ing is presently only available on Intel and PPC platforms.

e Time checks are made based on the total system time, notgsaagsage by Snort. This was a conscious design
decision because when a system is loaded, the latency fakatia based on the total system time, not just the
processor time the Snort application receives. Therefoierecommended that you tune your thresholding to
operate optimally when your system is under load.

2.6 Output Modules

Output modules are new as of version 1.6. They allow Snor tnbich more flexible in the formatting and presentation
of output to its users. The output modules are run when the @ldogging subsystems of Snort are called, after

114

the preprocessors and detection engine. The format of tketidies in the config file is very similar to that of the
preprocessors.

Multiple output plugins may be specified in the Snort configian file. When multiple plugins of the same type (log,
alert) are specified, they are stacked and called in seqwemee an event occurs. As with the standard logging and
alerting systems, output plugins send their data to /vaMglwort by default or to a user directed directory (using-the
command line switch).

Output modules are loaded at runtime by specifying the dikigyword in the config file:
output <name>: <options>

output alert_syslog: log_auth log_alert

2.6.1 alertsyslog

This module sends alerts to the syslog facility (much like #h command line switch). This module also allows the
user to specify the logging facility and priority within tl8nort config file, giving users greater flexibility in logging
alerts.

Available Keywords

Facilities
e log _auth
e log _authpriv
e log _daemon
e log _locald
e log _locall
e log _local2
e log _local3
e log _locald
e log _local5
e log _localé
e log _local7

e log _user

Priorities
e log _emerg
e log _alert
e log _crit
e log _err
e log _warning
e log _notice
e log _info

e log _debug

115

Options

e log _cons
e log _ndelay
e log _perror

e log _pid

Format

alert_syslog: \
<facility> <priority> <options>

ANOTE

As WIN32 does not run syslog servers locally by default, dirmse and port can be passed as options. [The
default host is 127.0.0.1. The default port is 514.

output alert_syslog: \
[host=<hostname[:<port>],] \
<facility> <priority> <options>

Example

output alert_syslog: host=10.1.1.1:514, <facility> <pri ority> <options>

2.6.2 alertfast

This will print Snort alerts in a quick one-line format to aesjfied output file. It is a faster alerting method than full
alerts because it doesn’t need to print all of the packetérsad the output file and because it logs to only 1 file.

Format

output alert_fast: [<filename> ["packet”] [<limit>]]
<limit> ::= <number>[('G’'M'|K")]

o filename : the name of the log file. The default name is jlogdir¢ /aMou may specify "stdout” for terminal
output. The name may include an absolute or relative path.

e packet : this option will cause multiline entries with full packeeaders to be logged. By default, only brief
single-line entries are logged.

e limit : an optional limit on file size which defaults to 128 MB. Thenimium is 1 KB. Se€Z2.6.13 for more
information.

Example

output alert_fast: alert.fast

116

2.6.3 alertfull

This will print Snort alert messages with full packet headdhe alerts will be written in the default logging diregtor
(/varflog/snort) or in the logging directory specified a tommand line.

Inside the logging directory, a directory will be created k& These files will be decoded packet dumps of the packets
that triggered the alerts. The creation of these files slavest®lown considerably. This output method is discouraged
for all but the lightest traffic situations.

Format

output alert_full: [<filename> [<limit>]]
<limit> ::= <number>[('G’'M'|K")]

¢ filename : the name of the log file. The default name is jlogdir¢ /aMou may specify "stdout” for terminal
output. The name may include an absolute or relative path.

e limit : an optional limit on file size which defaults to 128 MB. Thenimium is 1 KB. Se€Z2.6.13 for more
information.

Example

output alert_full: alert.full

2.6.4 alertunixsock

Sets up a UNIX domain socket and sends alert reports to iergat programs/processes can listen in on this socket
and receive Snort alert and packet data in real time. Thigriently an experimental interface.

Format

alert_unixsock

Example

output alert_unixsock

2.6.5 logtcpdump

The logtcpdump module logs packets to a tcpdump-formatted files iBhuseful for performing post-process analysis
on collected traffic with the vast number of tools that ardlatte for examining tcpdump-formatted files.

Format

output log_tcpdump: [<filename> [<limit>]]
<limit> ::= <number>[('G’'M'|K")]

e filename : the name of the log file. The default name is jlogdir¢/shloayt.The name may include an absolute
or relative path. A UNIX timestamp is appended to the filename

e limit : an optional limit on file size which defaults to 128 MB. Wheseagjuence of packets is to be logged, the
aggregate size is used to test the rollover condition[3£&®for more information.

117

Example

output log_tcpdump: snort.log

2.6.6 database

This module from Jed Pickel sends Snort data to a variety df 8Qabases. More information on installing and
configuring this module can be found on the [91]incidentwelp page. The arguments to this plugin are the name of
the database to be logged to and a parameter list. Pararaptesgecified with the format parameter = argument. see
Figure[ZB for example usage.

Format

database: <log | alert>, <database type>, <parameter list>
The following parameters are available:

host - Host to connect to. If a non-zero-length string is specjfiEdP/IP communication is used. Without a host
name, it will connect using a local UNIX domain socket.

port - Port numberto connectto at the server host, or socket filerextension for UNIX-domain connections.
dbname - Database name

user - Database username for authentication

passwor d - Password used if the database demands password authientica

sensor _nanme - Specify your own name for this Snort sensor. If you do not#ge name, one will be generated
automatically

encodi ng - Because the packet payload and option data is binary, haoeone simple and portable way to store it
in a database. Blobs are not used because they are not pataibss databases. So i leave the encoding option
to you. You can choose from the following options. Each hasvin advantages and disadvantages:

hex (default) - Represent binary data as a hex string.

Storage requirements - 2x the size of the binary
Searchability - very good
Human readability - not readable unless you are a true geek, requires postgsinge

base64 - Represent binary data as a base64 string.

Storage requirements - ~1.3x the size of the binary
Searchability - impossible without post processing
Human readability - not readable requires post processing

asci i - Represent binary data as an ASCII string. This is the ontioapwhere you will actually lose data.
Non-ASCII Data is represented as a ‘.. If you choose thisamptthen data for IP and TCP options will
still be represented as hex because it does not make anyfeetisat data to be ASCII.

Storage requirements - slightly larger than the binary because some characterssaaped (&;,>)
Searchability - very good for searching for a text string impossible if yoantto search for binary
human readability - very good

det ai | - How much detailed data do you want to store? The options are:

ful | (default) - Log all details of a packet that caused an aladi@iding IP/TCP options and the payload)

118

output database: \
log, mysql, doname=snort user=snort host=localhost passw ord=xyz

Figure 2.3: Database Output Plugin Configuration

fast - Log only a minimum amount of data. You severely limit thegmdtal of some analysis applications
if you choose this option, but this is still the best choicedome applications. The following fields are
logged:timestamp , signature , source ip , destination ip ,source port ,destination port ,tcp
flags , andprotocol)

Furthermore, there is a logging method and database typmtist be defined. There are two logging types available,
log andalert . Setting the type to log attaches the database loggingifuratity to the log facility within the program.

If you set the type to log, the plugin will be called on the lagmut chain. Setting the type to alert attaches the plugin
to the alert output chain within the program.

There are five database types available in the current veddithe plugin. These amassqgl , mysgl , postgresgl
oracle , andodbc . Set the type to match the database you are using.

ANOTE

The database output plugin does not have the ability to leaalérts that are generated by using tide
keyword. See sectidn3.Y.5 for more details.

2.6.7 csv

The csv output plugin allows alert data to be written in a fareasily importable to a database. The output fields and
their order may be customized.

Format

output alert_csv: [<filename> [<format> [<limit>]]]

<format> ::= "default"|<list>
<list> = <field>(,<field>)*
<field> = "dst"|"src"|"ttl" ...
<limit> ::= <number>[('G''M'|K")]

o filename : the name of the log file. The default name is jlogdir¢ /alsvt. You may specify "stdout” for terminal
output. The name may include an absolute or relative path.

e format : The list of formatting options is below. If the formattingtion is "default”, the output is in the order
of the formatting options listed.

— timestamp

sig _generator

sig _id

sig _rev
— msg

— proto

— src

— srcport
— dst

119

— dstport
— ethsrc

— ethdst

— ethlen

— tepflags
— tepseq

— tcpack

— tcplen

— tcpwindow
— ttl

— tos

—id

— dgmlen
— iplen

— icmptype
— icmpcode
— icmpid

— icmpseq

e limit : an optional limit on file size which defaults to 128 MB. Thenimium is 1 KB. Se€Z2.6.13 for more
information.

Example
output alert_csv: /var/log/alert.csv default

output alert_csv: /varflog/alert.csv timestamp, msg

2.6.8 unified

The unified output plugin is designed to be the fastest plessilethod of logging Snort events. The unified output
plugin logs events in binary format, allowing another pags to handle complex logging mechanisms that would
otherwise diminish the performance of Snort.

The nameunifiedis a misnomer, as the unified output plugin creates two diffefiles, aralert file, and alog file.
The alert file contains the high-level details of an event (&%, protocol, port, message id). The log file contains
the detailed packet information (a packet dump with the @ased event ID). Both file types are written in a binary
format described ispaunified.h

ANOTE

‘ Files have the file creation time (in Unix Epoch format) apgeshto each file when it is created.

Format
output alert_unified: <base file name> [, <limit <file size limit in MB>]
output log_unified: <base file name> [, <limit <file size li mit in MB>]

120

Example

output alert_unified: snort.alert, limit 128
output log_unified: snort.log, limit 128

2.6.9 unified 2

The unified2 output plugin is a replacement for the unifiegpatiplugin. It has the same performance characteristics,
but a slightly different logging format. See sectlon 2.6n8umified logging for more information.

Unified2 can work in one of three modes, packet logging, dtegging, or true unified logging. Packet logging
includes a capture of the entire packet and is specified lagthunified2 . Likewise, alert logging will only log
events and is specified witliert _unified2 . To include both logging styles in a single, unified file, siyngpecify
unified2

When MPLS support is turned on, MPLS labels can be includeahified2 events. Use optianpls _event _types to
enable this. If optiompls _event _types is not used, then MPLS labels will be not be included in unffiedents.

ANOTE

By default, unified 2 files have the file creation time (in Unipdeh format) appended to each file when it is
created.
Format
output alert_unified2: \
flename <base filename> [, <limit <size in MB>] [, nostamp] [, mpls_event_types]
output log_unified2: \
flename <base filename> [, <limit <size in MB>] [, nostamp]
output unified2; \
flename <base file name> [, <limit <size in MB>] [, nostamp] [, mpls_event_types]
Example
output alert_unified2: filename snort.alert, limit 128, n ostamp
output log_unified2; filename snort.log, limit 128, nosta mp
output unified2: filename merged.log, limit 128, nostamp
output unified2: filename merged.log, limit 128, nostamp, mpls_event_types
2.6.10 alertprelude
ANOTE
support to use alegqtrelude is not built in by default. To use algmtelude, snort must be built with the

—enable-prelude argument passed to ./configure.

The alertprelude output plugin is used to log to a Prelude databasanére information on Prelude, se#p://www.prelude-1ds.org

Format

output alert_prelude:; \

121

http://www.prelude-ids.org/

profile=<name of prelude profile> \

[info=<priority number for info priority alerts>] \

[low=<priority number for low priority alerts>] \

[medium=<priority number for medium priority alerts>]

Example

output alert_prelude: profile=snort info=4 low=3 medium= 2

2.6.11 log null
Sometimes it is useful to be able to create rules that wiltt atecertain types of traffic but will not cause packet log

entries. In Snort 1.8.2, the lagull plugin was introduced. This is equivalent to using theemmand line option but
it is able to work within a ruletype.

Format

output log_null

Example
output log_null # like using snort -n
ruletype info {
type alert

output alert_fast: info.alert
output log_null

2.6.12 alertaruba_action

ANOTE

Support to use alerubaaction is not built in by default. To use aleatubaaction, snort must be built wit
the —enable-aruba argument passed to ./configure.

Communicates with an Aruba Networks wireless mobility colier to change the status of authenticated users. This
allows Snort to take action against users on the Aruba cliertto control their network privilege levels.

For more information on Aruba Networks access control héieg/www.arubanetworks.com/

Format

output alert_aruba_action: \
<controller address> <secrettype> <secret> <action>

The following parameters are required:

control | er address - Aruba mobility controller address.

secrettype - Secrettype, one of "shal”, "md5” or "cleartext”.

122

http://www.arubanetworks.com/

secr et - Authentication secret configured on the Aruba mobilitytcolter with the "aaa xml-api client” configura-
tion command, represented as a shal or md5 hash, or a ctezassword.

action - Action to apply to the source IP address of the traffic getimegan alert.

bl ackl i st - Blacklist the station by disabling all radio communicatio
setrol e: rol enane - Change the users role to the specified rolename.

Example

output alert_aruba_action: \
10.3.9.6 cleartext foobar setrole:quarantine_role

2.6.13 Log Limits
This section pertains to logs produceddgrt _fast , alert _full , alert _csv, andlog _tcpdump . unified and
unified2 also may be given limits. Those limits are described in tispeetive sections.

When a configured limitis reached, the currentlog is closebsanew log is opened with a UNIX timestamp appended
to the configured log name.

Limits are configured as follows:

<limit> ::= <number>[(<gh>|<mb>|<kb>)]

<gb> := 'Gqg’
<mb> ;= 'M'I'm’
<kb> = KK

Rollover will occur at most once per second so if limit is taoadl for logging rate, limit will be exceeded. Rollover
works correctly if snort is stopped/restarted.

2.7 Host Attribute Table

Starting with version 2.8.1, Snort has the capability to inégrmation from an outside source to determine both the
protocol for use with Snort rules, and IP-Frag policy (segtisa[Z21) and TCP Stream reassembly policies (see
sectioZZPR). This information is stored in an attribuatelé, which is loaded at startup. The table is re-read during
run time upon receipt of signal number 30.

Snort associates a given packet with its attribute data frenable, if applicable.

For rule evaluation, service information is used insteaithefports when the protocol metadata in the rule matches the
service corresponding to the traffic. If the rule doesn'téhprotocol metadata, or the traffic doesn’t have any matching
service information, the rule relies on the port informatio

ANOTE

‘ To use a host attribute table, Snort must be configured with-émable-targetbased flag.

2.7.1 Configuration Format

attribute_table filename <path to file>

123

2.7.2 Attribute Table File Format

The attribute table uses an XML format and consists of twtices, a mapping section, used to reduce the size of the
file for common data elements, and the host attribute secfiba mapping section is optional.

An example of the file format is shown below.

<SNORT_ATTRIBUTES>
<ATTRIBUTE_MAP>
<ENTRY>
<ID>1</ID>
<VALUE>Linux</VALUE>
</[ENTRY>
<ENTRY>
<ID>2</ID>
<VALUE>ssh</VALUE>
</[ENTRY>
</ATTRIBUTE_MAP>
<ATTRIBUTE_TABLE>
<HOST>
<IP>192.168.1.234</IP>
<OPERATING_SYSTEM>
<NAME>
<ATTRIBUTE_ID>1</ATTRIBUTE_ID>
<CONFIDENCE>100</CONFIDENCE>
<INAME>
<VENDOR>
<ATTRIBUTE_VALUE>Red Hat</ATTRIBUTE_VALUE>
<CONFIDENCE>99</CONFIDENCE>
</VENDOR>
<VERSION>
<ATTRIBUTE_VALUE>2.6</ATTRIBUTE_VALUE>
<CONFIDENCE>98</CONFIDENCE>
</VERSION>
<FRAG_POLICY>linux</FRAG_POLICY>
<STREAM_POLICY>linux</STREAM_POLICY>
</OPERATING_SYSTEM>
<SERVICES>
<SERVICE>
<PORT>
<ATTRIBUTE_VALUE>22</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</PORT>
<IPPROTO>
<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</IPPROTO>
<PROTOCOL>
<ATTRIBUTE_ID>2</ATTRIBUTE_ID>
<CONFIDENCE>100</CONFIDENCE>
</PROTOCOL>
<APPLICATION>
<ATTRIBUTE_VALUE>OpenSSH</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
<VERSION>
<ATTRIBUTE_VALUE>3.9p1</ATTRIBUTE_VALUE>
<CONFIDENCE>93</CONFIDENCE>

124

</VERSION>
</APPLICATION>
</SERVICE>
<SERVICE>
<PORT>
<ATTRIBUTE_VALUE>2300</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</PORT>
<IPPROTO>
<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</IPPROTO>
<PROTOCOL>
<ATTRIBUTE_VALUE>telnet</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</PROTOCOL>
<APPLICATION>
<ATTRIBUTE_VALUE>telnet</ATTRIBUTE_VALUE>
<CONFIDENCE>50</CONFIDENCE>
</APPLICATION>
</SERVICE>
</SERVICES>
<CLIENTS>
<CLIENT>
<IPPROTO>
<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</IPPROTO>
<PROTOCOL>
<ATTRIBUTE_VALUE>http</ATTRIBUTE_VALUE>
<CONFIDENCE>91</CONFIDENCE>
</PROTOCOL>
<APPLICATION>
<ATTRIBUTE_VALUE>IE Http Browser</ATTRIBUTE_VALUE>
<CONFIDENCE>90</CONFIDENCE>
<VERSION>
<ATTRIBUTE_VALUE>6.0</ATTRIBUTE_VALUE>
<CONFIDENCE>89</CONFIDENCE>
</VERSION>
</APPLICATION>
</CLIENT>
</CLIENTS>
</HOST>
</ATTRIBUTE_TABLE>
</SNORT_ATTRIBUTES>

ANOTE

With Snort 2.8.1, for a given host entry, the stream and 1B information are both used. Of the service
attributes, only the IP protocol (tcp, udp, etc), port, anot@col (http, ssh, etc) are used. The application
and version for a given service attribute, and any cliemibattes are ignored. They will be used in a futyre
release.

A DTD for verification of the Host Attribute Table XML file is pvided with the snort packages.

The confidence metric may be used to indicate the validity gif’an service or client application and its respective
elements. That field is not currently used by Snort, but maip lieture releases.

125

2.7.3 Attribute Table Example

In the example above, a host running Red Hat 2.6 is descriligéd .host has an IP address of 192.168.1.234. On that
host, TCP port 22 is ssh (running Open SSH), and TCP port Z3&0riet.

The IP stack fragmentation and stream reassembly is mimhibiehe "linux” configuration (see sectiobs212.1 and

222).

Attribute Table Affect on preprocessors

e Network Layer Preprocessors
Each of the network layer preprocessors (frag3 and streamap use of the respecti’RAGPOLICY and
STREAMPOLICY in terms of how data is handled for reassembly for packetsgoeiceived by that host.

e Application Layer Preprocessors

The application layer preprocessors (HTTP, SMTP, FTP,efektc) make use of tHeERVICE information for
connections destined to that host on that port.

For example, even if the telnet portion of the FTP/Telneppweessor is only configured to inspect port 23,
Snort will inspect packets for a connection to 192.168.4 @&t 2300 as telnet.

Conversely, if, for example, HTTP Inspect is configured &piect traffic on port 2300, HTTP Inspect will NOT
process the packets on a connection to 192.168.1.234 pabtt#ause it is identified as telnet.

Below is a list of the common services used by Snort’s apptindayer preprocessors and Snort rules (see

below).
http ftp ftp-data telnet smtp | ssh tftp
dcerpc| netbios-dgm| netbios-ns| netbios-ssn nntp | finger | sunrpc
dns isakmp mysq| oracle cvs | shell | x11
imap | pop2 pop3 snmp

Attribute Table Affect on rules

Similar to the application layer preprocessors, rules goméid for specific ports that have a service metadata will be
processed based on the service identified by the attribboile ta

When both service metadata is present in the rule and in theemtion, Snort uses the service rather than the port. If
there are rules that use the service and other rules thattdmnthe port matches, Snort will ONLY inspect the rules
that have the service that matches the connection.

The following few scenarios identify whether a rule will bespected or not.

e Alert: Rule Has Service Metadata, Connection Service Megch

The following rule will be inspected and alert on traffic tosh@92.168.1.234 port 2300 because it is identified
as telnet.

alert tcp any any -> any 23 (msg:"Telnet traffic"; flow:to_s erver,established;
sid:10000001; metadata: service telnet;)

e Alert: Rule Has Multiple Service Metadata, Connection SmWatches One of them
The following rule will be inspected and alert on traffic toshd92.168.1.234 port 2300 because it is identified

as telnet.

alert tcp any any -> any 23 (msg:"Telnet traffic"; flow:to_s erver,established;
sid:10000002; metadata: service telnet, service smtp;)

126

e No Alert: Rule Has Service Metadata, Connection Servicesda Match, Port Matches

The following rule will NOT be inspected and NOT alert on fi@fo host 192.168.1.234 port 2300 because that

traffic is identified as telnet, but the service is ssh.

alert tcp any any -> any 2300 (msg:"SSH traffic"; flow:to_se rver,established;
sid:10000003; metadata: service ssh;)

e Alert: Rule Has No Service Metadata, Port Matches

The following rule will be inspected and alert on traffic toshd92.168.1.234 port 2300 because the port

matches.

alert tcp any any -> any 2300 (msg:"Port 2300 traffic"; flow: to_server,established;

5id:10000004;)

e Alert: Rule Has No Service Metadata, Packet has service er otihes with service

The first rule will NOT be inspected and NOT alert on traffic tsh192.168.1.234 port 2300 because the service

is identified as telnet and there are other rules with thaicer

alert tcp any any -> any 2300 (msg:"Port 2300 traffic"; flow: to_server,established;
sid:10000005;)
alert tcp any any -> any 2300 (msg:"Port 2300 traffic"; flow: to_server,established;

sid:10000006; metadata: service telnet;)

e No Alert: Rule Has No Service Metadata, Port Does Not Match

The following rule will NOT be inspected and NOT alert on fiafo host 192.168.1.234 port 2300 because the

port does not match.

alert tcp any any -> any 23 (msg:"Port 23 traffic"; flow:to_s erver,established;

sid:10000007;)

2.8 Dynamic Modules

Dynamically loadable modules were introduced with Snddt Zhey can be loaded via directivessimort.conf

via command-line options.

ANOTE

‘ To disable use of dynamic modules, Snort must be configurtrdtie--disable-dynamicplugin flag.

2.8.1 Format

<directive> <parameters>

2.8.2 Directives

Syntax

Description

dynamicpreprocessor [file
<shared library path > |
directory <directory of
shared libraries >]

Tells snort to load the dynamic preprocessor shared libr@ry|
file is used) or all dynamic preprocessor shared librariésdii
rectory is used). Specifyfile , followed by the full or rel-
ative path to the shared library. Or, specifirectory , fol-
lowed by the full or relative path to a directory of preprosas

shared libraries. (Same effect adynamic-preprocessor-lib or
--dynamic-preprg%e;sor-lib-dir options). See chaptEl 4 for mo
information on‘dvnamic nrenrocessor libraries.

or

dynamicengine [file <shared Tells snort to load the dynamic engine shared library (if leised) or
library path > | directory all dynamic engine shared libraries (if directory is usespecifyfile
<directory of shared followed by the full or relative path to the shared libraryr, Gpecify
libraries >] directory , followed by the full or relative path to a directory of pre-
processor shared libraries. (Same effect@smamic-engine-lib or
--dynamic-preprocessor-lib-dir options). See chaptEl 4 for mote
information on dynamic engine libraries.
dynamicdetection [file Tells snort to load the dynamic detection rules shared tjb(d file
<shared library path > | is used) or all dynamic detection rules shared librariesdiiiéctory
directory <directory of is used). Specifyile , followed by the full or relative path to the
shared libraries >] shared library. Or, specifgiirectory , followed by the full or relative
path to a directory of detection rules shared libraries.m&a&ffect as
--dynamic-detection-lib or --dynamic-detection-lib-dir op-
tions). See chapté&l 4 for more information on dynamic ditegules
libraries.

2.9 Reloading a Snort Configuration

Snort now supports reloading a configuration in lieu of nestg Snort in so as to provide seamless traffic inspection
during a configuration change. A separate thread will pansecaeate a swappable configuration object while the
main Snort packet processing thread continues inspectiffictunder the current configuration. When a swappable
configuration object is ready for use, the main Snort packatgssing thread will swap in the new configuration to
use and will continue processing under the new configuralimte that for some preprocessors, existing session data
will continue to use the configuration under which they weneated in order to continue with proper state for that
session. All newly created sessions will, however, use &veconfiguration.

2.9.1 Enabling support

To enable support for reloading a configuration, adolble-reload to configure when compiling.

There is also an ancillary option that determines how Skl behave if any non-reloadable options are changed
(see sectiofi 2.9.3 below). This option is enabled by defaudt the behavior is for Snort to restart if any non-
reloadable options are added/modified/removed. To dighiséehavior and have Snort exit instead of restart, add
--disable-reload-error-restart in addition to--enable-reload to configure when compiling.

ANOTE

‘ This functionality is not currently supported in Windows.

2.9.2 Reloading a configuration

First modify your snort.conf (the file passed to theoption on the command line).

Then, to initiate a reload, send SnoBl&HUPsignal, e.g.

$ kill -SIGHUP <snort pid>

ANOTE

‘ If reload support is not enabled, Snort will restart (aswals has) upon receipt of a SIGHUP.

128

ANOTE

An invalid configuration will still result in Snort fatal esring, so you should test your new configuratipn
before issuing a reload, e.§.snort -c snort.conf -T

2.9.3 Non-reloadable configuration options

There are a number of option changes that are currently eloadgable because they require changes to output, startup
memory allocations, etc. Modifying any of these optiond wéluse Snort to restart (asS&EGHUP previously did) or
exit (if --disable-reload-error-restart was used to configure Snort).

Reloadable configuration options of note:

¢ Adding/modifying/removing text rules and variables areagable.

¢ Adding/modifying/removing preprocessor configuratioresloadable (except as noted below).
Non-reloadable configuration options of note:

¢ Adding/modifying/removing shared objects via dynamieatibn, dynamicengine and dynamicpreprocessor are
not reloadable, i.e. any new/modified/removed shared tyeitl require a restart.

e Any changes to output will require a restart.

Changes to the following options are not reloadable:

attribute_table
config alertfile
config asnl

config chroot

config daemon
config detection_filter
config flowbits_size
config interface
config logdir

config max_attribute_hosts
config nolog

config no_promisc
config pkt_count
config rate_filter
config read_bin_file
config response
config set_gid
config set_uid
config snaplen
config threshold
dynamicdetection
dynamicengine
dynamicpreprocessor
output

In certain cases, only some of the parameters to a configroptigpreprocessor configuration are not reloadable.
Those parameters are listed below the relevant config optipreprocessor.

config ppm: max-rule-time <int>
rule-log
config profile_rules

129

filename

print

sort
config profile_preprocs
filename

print

sort

preprocessor dcerpc2
memcap

preprocessor frag3_global
max_frags

memcap

prealloc_frags
prealloc_memcap
disabled

preprocessor perfmonitor
file

snortfile

preprocessor sfportscan
memcap

logfile

disabled

preprocessor stream5_global
memcap

max_tcp

max_udp

max_icmp

track_tcp

track_udp

track_icmp

2.10 Multiple Configurations

Snort now supports multiple configurations based on VLANHrtRosubnet within a single instance of Snort. This will
allow administrators to specify multiple snort configuoatfiles and bind each configuration to one or more VLANs
or subnets rather than running one Snort for each configuraéiquired. Each unique snort configuration file will
create a new configuration instance within snort. VLANsAStb not bound to any specific configuration will use the
default configuration. Each configuration can have diffepgaprocessor settings and detection rules.

2.10.1 Creating Multiple Configurations

Default configuration for snort is specified using the erigtic option. A default configuration binds multiple vlans
or networks to non-default configurations, using the folloywconfiguration line:

config binding: <path_to_snort.conf> vlan <vlanldList>
config binding: <path_to_snort.conf> net <ipList>
pat h.t o_snort. conf - Refersto the absolute or relative path to the snort.cardgecific configuration.

vl anl dLi st - Refers to the comma seperated list of vlandlds and vlamiges. The format for ranges is two vlanid
separated by a "-". Spaces are allowed within ranges. Vaéidld is any number in 0-4095 range. Negative
vland Ids and alphanumeric are not supported.

i pLi st - Refersto ip subnets. Subnets can be CIDR blocks for IPV®wa4.1 A maximum of 512 individual IPv4
or IPv6 addresses or CIDRs can be specified.

130

NOTE
Vlan and Subnets can not be used in the same line. Confignsaten be applied based on either Vlans or

Subnets not both.

/!\NOTE

‘ Even though Vlan Ids 0 and 4095 are reserved, they are indlaslealid in terms of configuring Snort.

2.10.2 Configuration Specific Elements
Config Options

Generally config options defined within the default configioraare global by default i.e. their value applies to all
other configurations. The following config options are sfietd each configuration.

policy id
policy_mode
policy_version

The following config options are specific to each configuratibnot defined in a configuration, the default values of
the option (not the default configuration values) take effec

config checksum_drop

config disable_decode_alerts

config disable_decode_drops

config disable_ipopt_alerts

config disable_ipopt_drops

config disable_tcpopt_alerts

config disable_tcpopt_drops

config disable_tcpopt_experimental_alerts
config disable_tcpopt_experimental_drops
config disable_tcpopt obsolete_alerts
config disable_tcpopt_obsolete_drops
config disable_ttcp_alerts

config disable_tcpopt_ttcp_alerts

config disable_ttcp_drops

Rules

Rules are specific to configurations but only some parts oleagan be customized for performance reasons. If a
rule is not specified in a configuration then the rule will menagse an event for the configuration. A rule shares all
parts of the rule options, including the general optiong|/ged detection options, non-payload detection optiond, a
post-detection options. Parts of the rule header can béfiguedifferently across configurations, limited to:

Source IP address and port

Destination IP address and port

Action

A higher revision of a rule in one configuration will overridther revisions of the same rule in other configurations.

Variables

Variables defined using "var”, "portvar” and "ipvar” are gjiféc to configurations. If the rules in a configuration use
variables, those variables must be defined in that configurat

131

Preprocessors

Preprocessors configurations can be defined within eachovlanbnet specific configuration. Options controlling
specific preprocessor memory usage, through specific limihemory usage or number of instances, are processed
only in default policy. The options control total memory gedor a preprocessor across all policies. These options are
ignored in non-default policies without raising an errompeprocessor must be configured in default configuration be-

fore it can be configured in non-default configuration. Thisgquired as some mandatory preprocessor configuration
options are processed only in default configuration.

Events and Output
An unique policy id can be assigned by user, to each configurasing the following config line:
config policy_id: <id>

i d - Refers to a 16-bit unsigned value. This policy id will be dise identify alerts from a specific configuration in
the unified2 records.

ANOTE

‘ If no policy id is specified, snort assigns 0 (zero) value ®¢hnfiguration.

To enable vlanld logging in unified2 records the followingiop can be used.

output alert_unified2: vlan_event_types (alert logging o nly)
output unified2; filename <filename>, vlan_event types (true unified logging)

fil ename - Refers to the absolute or relative filename.

vl an_event _t ypes - When this option is set, snort will use unified2 event typd a6d 105 for IPv4 and IPv6
respectively.

ANOTE

‘ Each event logged will have the vlanld from the packet if \t@aders are present otherwise 0 will be us#d.

2.10.3 How Configuration is applied?

Snort assigns every incoming packet to a unique configuratiged on the following criteria. If VLANID is present,
then the innermost VLANID is used to find bound configuratitirihe bound configuration is the default configura-
tion, then destination IP address is searched to the mosifisgmibnet that is bound to a non-default configuration.
The packet is assigned non-default configuration if foutgtise the check is repeated using source IP address. In
the end, default configuration is used if no other matchingigaration is found.

For addressed based configuration binding, this can leamhifticts between configurations if source address is bound
to one configuration and destination address is bound tdandh this case, snort will use the first configuration in
the order of definition, that can be applied to the packet.

2.11 Active Response

Snort 2.9 includes a number of changes to better handlesinlderation, including:

132

a single mechanism for all responses

fully encoded reset or icmp unreachable packets

updated flexible response rule option

updated react rule option

added block and sblock rule actions

These changes are outlined below.

2.11.1 Enabling Active Response

This enables active responses (snort will send TCP RST oiPl@hteachable/port) when dropping a session.

Jconfigure --enable-active-response / -DACTIVE_RESPON SE

preprocessor stream5_global: \
max_active_responses <max_rsp>, \
min_response_seconds <min_sec>

<max_rsp> :
<min_sec>

(0..25)
(1..300)

Active responses will be encoded based on the triggeringgtad TL will be set to the value captured at session
pickup.

2.11.2 Configure Sniping

Configure the number of attempts to land a TCP RST within tesisa’s current window (so that it is accepted by the

receiving TCP). This sequence "strafing” is really only usaf passive mode. In inline mode the reset is put straight
into the stream in lieu of the triggering packet so strafingasnecessary.

Each attempt (sent in rapid succession) has a differeneseginumber. Each active response will actually cause this
number of TCP resets to be sent. TCP data (sent for react)ligphimd similarly. At most 1 ICMP unreachable is
sent, if and only if attempts ¢ 0.

Jconfigure --enable-active-response
config response: attempts <att>

<att> = (1..20)

2.11.3 Flexresp

Flexresp and flexresp?2 are replaced with flexresp3.

* Flexresp is deleted; these features are no longer avaliabl

Jconfigure --enable-flexresp / -DENABLE_RESPOND -DENAB LE_RESPONSE
config flexresp: attempts 1

* Flexresp2 is deleted; these features are deprecatedumational, and will be deleted in a future release:

133

Jconfigure --enable-flexresp2 / -DENABLE_RESPOND -DENA BLE_RESPONSE?2

config flexresp2_interface: eth0
config flexresp2_attempts: 4
config flexresp2_memcap: 1000000
config flexresp2_rows: 1000

* Flexresp3 is new: the resp rule option keyword is used tdiganre active responses for rules that fire.
Jconfigure --enable-flexresp3 / -DENABLE_RESPOND -DENA BLE_RESPONSE3
alert tcp any any -> any 80 (content"a"; resp:<resp_t>; sid 1)

* resp _t includes all flexresp and flexresp2 options:

<resp_t> =\
rst snd | rst_rcv | rst all |\
reset_source | reset dest | reset both | icmp_net | \
icmp_host | icmp_port | icmp_all

2.11.4 React

react is a rule option keyword that enables sending an HTMjema a session and then resetting it. This is built with:
Jconfigure --enable-react / -DENABLE_REACT

The page to be sent can be read from afile:
config react: <block.html>

or else the default is used:

<default_page> ::=\
"HTTP/1.1 403 Forbidden\n\n"
"Connection: close\r\n"
"Content-Type: text’html; charset=utf-8\r\n"

“\n\n"

"<IDOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.L//EN\"\\n "\

" \"http:/mww.w3.0rg/TR/xhtmI11/DTD/xhtmI11.dtd\">\ nn" \

"<html xmins=\"http://www.w3.0rg/1999/xhtml\" xml:lan g=\"en\">\r\n" \
"<head>\rin" \

"<meta http-equiv=\"Content-Type\" content=\"text/htm l; charset=UTF-8\" />\r\n" \

"<title>Access Denied</title>\r\n" \
"</head>\r\n" \

"<body>\rin" \

"<h1>Access Denied</h1>\r\n" \
"<p>%s</p>\rin" \

"</body>\r\n" \

"</html>\r\n";

Note that the file must contain the entire response, inctydimy HTTP headers. In fact, the response isn't strictly
limited to HTTP. You could craft a binary payload of arbitraiontent.

When the rule is configured, the page is loaded and the sdlaatssage, which defaults to:

134

<default msg> =\
"You are attempting to access a forbidden site.
" \
"Consult your system administrator for details.";

This is an example rule:

drop tcp any any -> any $HTTP_PORTS (\
content: "d"; msg:"Unauthorized Access Prohibited!"; \
react: <react opts>; sid:4;)

<react_opts> = [msg] [, <dep_opts>]
These options are deprecated:
<dep_opts> ::= [blockjwarn], [proxy <port#>]

The original version sent the web page to one end of the sessiy if the other end of the session was port 80 or the
optional proxy port. The new version always sends the patfeetalient. If no page should be sent, a resp option can
be used instead. The deprecated options are ignored.

2.11.5 Rule Actions

The block and sblock actions have been introduced as symnofogmarop and sdrop to help avoid confusion between
packets dropped due to load (eg lack of available buffersnimmming packets) and packets blocked due to Snort’s
analysis.

135

Chapter 3

Writing Snort Rules

3.1 The Basics

Snort uses a simple, lightweight rules description languthgt is flexible and quite powerful. There are a number of
simple guidelines to remember when developing Snort rblaswill help safeguard your sanity.

Most Snort rules are written in a single line. This was reegiin versions prior to 1.8. In current versions of Snort,
rules may span multiple lines by adding a backslagithe end of the line.

Snort rules are divided into two logical sections, the rudader and the rule options. The rule header contains
the rule’s action, protocol, source and destination IP esklrs and netmasks, and the source and destination ports
information. The rule option section contains alert messand information on which parts of the packet should be
inspected to determine if the rule action should be taken.

Figurel3 illustrates a sample Snort rule.

The text up to the first parenthesis is the rule header ancetitma enclosed in parenthesis contains the rule options.
The words before the colons in the rule options section dtedcaptionkeywords

ANOTE

Note that the rule options section is not specifically regghipy any rule, they are just used for the sake of
making tighter definitions of packets to collect or alert ondrop, for that matter).

All of the elements in that make up a rule must be true for tlécted rule action to be taken. When taken together,
the elements can be considered to form a logicad statement. At the same time, the various rules in a Snorg rule
library file can be considered to form a large logioca statement.

3.2 Rules Headers

3.2.1 Rule Actions

The rule header contains the information that defines the where, and what of a packet, as well as what to do in
the event that a packet with all the attributes indicatedvnrtle should show up. The first item in a rule is the rule

alert tcp any any -> 192.168.1.0/24 111 \
(content:"|00 01 86 a5|"; msg:"mountd access";)

Figure 3.1: Sample Snort Rule

136

action. The rule action tells Snort what to do when it finds ekpathat matches the rule criteria. There are 5 available
default actions in Snort, alert, log, pass, activate, anthdyic. In addition, if you are running Snort in inline mode,
you have additional options which include drop, reject, atidp.

alert - generate an alert using the selected alert mesimatthen log the packet

log - log the packet

pass - ignore the packet

activate - alert and then turn on another dynamic rule

dynamic - remain idle until activated by an activate ruteen act as a log rule

drop - block and log the packet

N oo gk~ w N PE

reject - block the packet, log it, and then send a TCP ré#le¢ iprotocol is TCP or an ICMP port unreachable
message if the protocol is UDP.

8. sdrop - block the packet but do not log it.

You can also define your own rule types and associate one ar autput plugins with them. You can then use the
rule types as actions in Snort rules.

This example will create a type that will log to just tcpdump:

ruletype suspicious

{

type log
output log_tcpdump: suspicious.log

This example will create a rule type that will log to sysloglanMySQL database:

ruletype redalert

{

type alert

output alert_syslog: LOG_AUTH LOG_ALERT

output database: log, mysql, user=snort dbname=snort host =localhost
}

3.2.2 Protocols

The next field in a rule is the protocol. There are four protetoat Snort currently analyzes for suspicious behavior
—TCP, UDP, ICMP, and IP. In the future there may be more, ssdiRP, IGRP, GRE, OSPF, RIP, IPX, etc.

3.2.3 IP Addresses

The next portion of the rule header deals with the IP addnedgart information for a given rule. The keyword any
may be used to define any address. Snort does not have a nmuoharprovide host name lookup for the IP address
fields in the config file. The addresses are formed by a straigimeric I[P address and a CIDR[3] block. The CIDR
block indicates the netmask that should be applied to tleesratidress and any incoming packets that are tested against
the rule. A CIDR block mask of /24 indicates a Class C netwtir&,a Class B network, and /32 indicates a specific
machine address. For example, the address/CIDR comhint®i®.168.1.0/24 would signify the block of addresses
from 192.168.1.1to 192.168.1.255. Any rule that used tesghation for, say, the destination address would match
on any address in that range. The CIDR designations give iceashort-hand way to designate large address spaces
with just a few characters.

137

alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111 \
(content:"|00 01 86 a5|"; msg:"external mountd access";)

Figure 3.2: Example IP Address Negation Rule

alert tcp 1[192.168.1.0/24,10.1.1.0/24] any -> \
[192.168.1.0/24,10.1.1.0/24] 111 (content:"|00 01 86 a5| "\
msg:"external mountd access";)

Figure 3.3: IP Address Lists

In Figure[31, the source IP address was set to match for anpuier talking, and the destination address was set to
match on the 192.168.1.0 Class C network.

There is an operator that can be applied to IP addressesedfation operator. This operator tells Snort to match any
IP address except the one indicated by the listed IP addrassmegation operator is indicated with a . For example,
an easy modification to the initial example is to make it ad@riny traffic that originates outside of the local net with
the negation operator as shown in Figiurd 3.2.

This rule’s IP addresses indicate any tcp packet with a sdir@ddress not originating from the internal network and
a destination address on the internal network.

You may also specify lists of IP addresses. An IP list is djgtby enclosing a comma separated list of IP addresses
and CIDR blocks within square brackets. For the time belmg]P list may not include spaces between the addresses.
See Figur€3]3 for an example of an IP list in action.

3.2.4 Port Numbers

Port numbers may be specified in a number of ways, includingpanmts, static port definitions, ranges, and by
negation. Any ports are a wildcard value, meaning literalhy port. Static ports are indicated by a single port
number, such as 111 for portmapper, 23 for telnet, or 80 tpr, btc. Port ranges are indicated with the range operator
.. The range operator may be applied in a number of ways todakkfferent meanings, such as in Figlird 3.4.

Port negation is indicated by using the negation operatdhé negation operator may be applied against any of the
other rule types (except any, which would translate to nboe, Zen...). For example, if for some twisted reason you
wanted to log everything except the X Windows ports, you dald something like the rule in FigueB.5.

3.2.5 The Direction Operator

The direction operator> indicates the orientation, or direction, of the traffic this rule applies to. The IP address
and port numbers on the left side of the direction operat@oissidered to be the traffic coming from the source

log udp any any -> 192.168.1.0/24 1:1024
log udp traffic coming from any port and destination portgyiag from 1 to 1024

log tcp any any -> 192.168.1.0/24 :6000
log tcp traffic from any port going to ports less than or eqo@@00
log tcp any :1024 -> 192.168.1.0/24 500:
log tcp traffic from privileged ports less than or equal to 4@ding to ports greater than or equal to 500

Figure 3.4: Port Range Examples

138

log tcp any any -> 192.168.1.0/24 !6000:6010

Figure 3.5: Example of Port Negation
log tcp !192.168.1.0/24 any <> 192.168.1.0/24 23

Figure 3.6: Snort rules using the Bidirectional Operator

host, and the address and port information on the right sideeooperator is the destination host. There is also a
bidirectional operator, which is indicated with<a> symbol. This tells Snort to consider the address/port pairs
either the source or destination orientation. This is hdondyecording/analyzing both sides of a conversation, asch
telnet or POP3 sessions. An example of the bidirectionaladpebeing used to record both sides of a telnet session is
shown in Figur€316.

Also, note that there is ne- operator. In Snort versions before 1.8.7, the directioerafr did not have proper
error checking and many people used an invalid token. Treorethe<- does not exist is so that rules always read
consistently.

3.2.6 Activate/Dynamic Rules

ANOTE

Activate and Dynamic rules are being phased out in favor afralination of taggind{3.745) and flowbits

EEI0).

Activate/dynamic rule pairs give Snort a powerful capailiYou can now have one rule activate another when it's
action is performed for a set number of packets. This is vesful if you want to set Snort up to perform follow on
recording when a specific rule goes off. Activate rules ast fike alert rules, except they have a *required* option
field: activates. Dynamic rules act just like log rules, theyt have a different option field: activatég. Dynamic
rules have a second required field as well, count.

Activate rules are just like alerts but also tell Snort to addle when a specific network event occurs. Dynamic rules
are just like log rules except are dynamically enabled wheractivate rule id goes off.

Put 'em together and they look like Figurel3.7.

These rules tell Snort to alert when it detects an IMAP budfearflow and collect the next 50 packets headed for port
143 coming from outside $HOMBET headed to SHOMBET. If the buffer overflow happened and was successful,
there’s a very good possibility that useful data will be @méd within the next 50 (or whatever) packets going to that
same service port on the network, so there’s value in caligthose packets for later analysis.

3.3 Rule Options

Rule options form the heart of Snort’s intrusion detectingiee, combining ease of use with power and flexibility. All
Snort rule options are separated from each other using thieg®n (;) character. Rule option keywords are separated
from their arguments with a colon (:) character.

activate tcp '$HOME_NET any -> $SHOME_NET 143 (flags:PA; \
content:"|EBCOFFFFFF|/bin"; activates:1; \
msg:"IMAP buffer overflow!";)

dynamic tcp !$HOME_NET any -> $HOME_NET 143 (activated_by: 1; count:50;)

Figure 3.7: Activate/Dynamic Rule Example

139

There are four major categories of rule options.

general These options provide information about the rule but do methany affect during detection
payload These options all look for data inside the packet payloadcamdoe inter-related
non-payload These options look for non-payload data

post-detection These options are rule specific triggers that happen afidedas “fired.”

3.4 General Rule Options

3.4.1 msg
The msg rule option tells the logging and alerting enginetiessage to print along with a packet dump or to an alert.

It is a simple text string that utilizes theas an escape character to indicate a discrete charactenitifettotherwise
confuse Snort’s rules parser (such as the semi-colon ; clesya

Format

msg:"<message text>";

3.4.2 reference

The reference keyword allows rules to include referencesternal attack identification systems. The plugin cutyent
supports several specific systems as well as unique URLs.pligin is to be used by output plugins to provide a link
to additional information about the alert produced.

Make sure to also take a lookratp://www.snort.org/pub-bin/sigs-search.cgi/ for a system that is indexing
descriptions of alerts based on of the sid (See SeECiion)3.4.4

Table 3.1: Supported Systems

System URL Prefix
bugtraq http://www.securityfocus.com/bid/
cve http://cve.mitre.org/cgi-bin/cvename.cgi?names
nessus http://cgi.nessus.org/plugins/dump.php3?id=
arachnids| (currently down) http://www.whitehats.com/info/IDS
mcafee http://vil.nai.com/vil/content/v
osvdb http://osvdb.org/show/osvdb/
url http://
Format
reference:<id system>, <id>; [reference:<id system>, <id >)]
Examples
alert tcp any any -> any 7070 (msg:"IDS411/dos-realaudio”; \
flags:AP; content:"|fff4 fffd 06|"; reference:arachnids ,IDS411;)
alert tcp any any -> any 21 (msg:"IDS287/ftp-wuftp260-veng lin-linux"; \

140

http://www.snort.org/pub-bin/sigs-search.cgi/

flags:AP; content:"|31c031db 31c9b046 cd80 31c031db|"; \
reference:arachnids,|DS287; reference:bugtraq,1387; \
reference:cve,CAN-2000-1574;)

3.4.3 gid

The gid keyword (generator id) is used to identify what part of Srggherates the event when a particular rule
fires. For example gid 1 is associated with the rules subsyated various gids over 100 are designated for specific
preprocessors and the decoder. See etc/generators inutive s@e for the current generator ids in use. Note that the
gid keyword is optional and if it is not specified in a rule, ithdefault to 1 and the rule will be part of the general rule
subsystem. To avoid potential conflict with gids defined ini$Sthat for some reason aren’t noted it etc/generators),

it is recommended that values starting at 1,000,000 be #s@mdgeneral rule writing, it is not recommended that the
gid keyword be used. This option should be used withsttiekeyword. (See sectidn 3.4.4)

The file etc/gen-msg.map contains contains more informatiopreprocessor and decoder gids.

Format

gid:<generator id>;
Example
This example is a rule with a generator id of 1000001.

alert tcp any any -> any 80 (content."BOB"; gid:1000001; sid 1 revil;)

3.4.4 sid

Thesid keyword is used to uniquely identify Snort rules. This imf@tion allows output plugins to identify rules
easily. This option should be used with tleg keyword. (See sectidn3.3.5)

e <100 Reserved for future use
e 100-999,999 Rules included with the Snort distribution
e >=1,000,000 Used for local rules

The file sid-msg.map contains a mapping of alert messagesadd file IDs. This information is useful when post-
processing alert to map an ID to an alert message.

Format

sid:<snort rules id>;

Example

This example is a rule with the Snort Rule ID of 1000983.

alert tcp any any -> any 80 (content:"BOB"; sid:1000983; rev 1)

141

3.45 rev
Therev keyword is used to uniquely identify revisions of Snort mildRevisions, along with Snort rule id’s, allow
signatures and descriptions to be refined and replaced withtad information. This option should be used with the
sid keyword. (See sectidn3.3.4)

Format

rev:<revision integer>;

Example

This example is a rule with the Snort Rule Revision of 1.

alert tcp any any -> any 80 (content."BOB"; sid:1000983; rev 1)

3.4.6 classtype

Theclasstype

keyword is used to categorize a rule as detecting an attatkstpart of a more general type of attack

class. Snort provides a default set of attack classes thatisad by the default set of rules it provides. Defining
classifications for rules provides a way to better orgartizestvent data Snort produces.

Format

classtype:<class name>;

Example

alert tcp any any -> any 25 (msg:"SMTP expn root"; flags:A+; \

Attack classifications defined by Snort reside indlassification.config

config classification:

<class name>,<class description>

content:"expn root"; nocase; classtype:attempted-recon)

,<default priority>

file. The file uses the following syntax:

These attack classifications are listed in TébI& 3.2. Theyarrently ordered with 4 default priorities. A priority bf
(high) is the most severe and 4 (very low) is the least severe.

Table 3.2: Snort Default Classifications

| Classtype | Description | Priority |
attempted-admin Attempted Administrator Privilege Gain high
attempted-user Attempted User Privilege Gain high
inappropriate-content Inappropriate Content was Detected high
policy-violation Potential Corporate Privacy Violation high
shellcode-detect Executable code was detected high
successful-admin Successful Administrator Privilege Gain high
successful-user Successful User Privilege Gain high
trojan-activity A Network Trojan was detected high
unsuccessful-user Unsuccessful User Privilege Gain high
web-application-attack Web Application Attack high

142

attempted-dos Attempted Denial of Service medium
attempted-recon Attempted Information Leak medium
bad-unknown Potentially Bad Traffic medium
default-login-attempt Attempt to login by a default username apdmedium
password
denial-of-service Detection of a Denial of Service Attack medium
misc-attack Misc Attack medium
non-standard-protocol Detection of a hon-standard protocol or eveniedium
rpc-portmap-decode Decode of an RPC Query medium
successful-dos Denial of Service medium
successful-recon-largescale Large Scale Information Leak medium
successful-recon-limited Information Leak medium
suspicious-filename-detect A suspicious filename was detected medium
suspicious-login An attempted login using a suspicious usgrmedium
name was detected
system-call-detect A system call was detected medium
unusual-client-port-connection A client was using an unusual port medium
web-application-activity Access to a potentially vulnerable web appli-medium
cation
icmp-event Generic ICMP event low
misc-activity Misc activity low
network-scan Detection of a Network Scan low
not-suspicious Not Suspicious Traffic low
protocol-command-decode Generic Protocol Command Decode low
string-detect A suspicious string was detected low
unknown Unknown Traffic low
tcp-connection A TCP connection was detected very low

Warnings

The classtype option can only use classifications that have been definesar.conf by using theconfig
classification option. Snort provides a default set of classificationslassification.config that are used
by the rules it provides.

3.4.7 priority

Thepriority ~ tag assigns a severity level to rulesclasstype rule assigns a default priority (defined by thoafig
classification option) that may be overridden with a priority rule. Exangodé each case are given below.
Format

priority:<priority integer>;

Examples

alert tcp any any -> any 80 (msg:"WEB-MISC phf attempt"; flag S:A+H \
content:"/cgi-bin/phf"; priority:10;)

alert tcp any any -> any 80 (msg:"EXPLOIT ntpdx overflow"; \
dsize:>128; classtype:attempted-admin; priority:10);

143

3.4.8 metadata

Themetadata tag allows a rule writer to embed additional informationattbe rule, typically in a key-value format.
Certain metadata keys and values have meaning to Snortatigted in Tabl&3]3. Keys other than those listed in the
table are effectively ignored by Snort and can be free-favith a key and a value. Multiple keys are separated by a
comma, while keys and values are separated by a space.

Table 3.3: Snort Metadata Keys

Key Description Value Format
engine Indicate a Shared Library Rule "shared”
soid Shared Library Rule Generator and SID gid|sid
service Target-Based Service Identifier "http”

ANOTE

Theservice Metadata Key is only meaningful when a Host Atttribute Tablerovided. When the value
exactly matches the service ID as specified in the table uledas applied to that packet, otherwise, the rtile
is not applied (even if the ports specified in the rule mat&8ee SectioR 217 for details on the Host Attribiite
Table.

Format

The examples below show an stub rule from a shared libras; riihe first uses multiple metadata keywords, the
second a single metadata keyword, with keys separated bgnasm

metadata:keyl valuel;
metadata:keyl valuel, key2 value2;

Examples

alert tcp any any -> any 80 (msg:"Shared Library Rule Example "
metadata:engine shared; metadata:soid 3|12345;)

alert tcp any any -> any 80 (msg:"Shared Library Rule Example "o\
metadata:engine shared, soid 3|12345;)

alert tcp any any -> any 80 (msg:"HTTP Service Rule Example"; \
metadata:service http;)

3.4.9 General Rule Quick Reference

Table 3.4: General rule option keywords

Keyword Description

msg The msg keyword tells the logging and alerting engine thesangs to print with
the packet dump or alert.

reference The reference keyword allows rules to include referencexternal attack iden
tification systems.

gid The gid keyword (generator id) is used to identify what pdBmort generates the
event when a particular rule fires.

144

sid The sid keyword is used to uniquely identify Snort rules.

rev The rev keyword is used to uniquely identify revisions of 8moles.

classtype The classtype keyword is used to categorize a rule as degeati attack that ig
part of a more general type of attack class.

priority The priority keyword assigns a severity level to rules.

metadata The metadata keyword allows a rule writer to embed additiorfiermation about
the rule, typically in a key-value format.

3.5 Payload Detection Rule Options

3.5.1 content

The content keyword is one of the more important featuresnafrtS It allows the user to set rules that search for
specific content in the packet payload and trigger respoasecbon that data. Whenever a content option pattern
match is performed, the Boyer-Moore pattern match fundsaalled and the (rather computationally expensive) test
is performed against the packet contents. If data exactlgimrag the argument data string is contained anywhere
within the packet’s payload, the test is successful andeh®wmder of the rule option tests are performed. Be aware
that this test is case sensitive.

The option data for the content keyword is somewhat comjl&gn contain mixed text and binary data. The binary
data is generally enclosed within the pigedharacter and represented as bytecode. Bytecode refyredsery data
as hexadecimal numbers and is a good shorthand method foiildeg complex binary data. The example below
shows use of mixed text and binary data in a Snort rule.

Note that multiple content rules can be specified in one fiiés allows rules to be tailored for less false positives.

If the rule is preceded by the alert will be triggered on packets that do not contamdbntent. This is useful when
writing rules that want to alert on packets that do not matchréain pattern

ANOTE

Also note that the following characters must be escapedeérsicontent rule:
; \ n

Format

content:[!]"<content string>";

Examples

alert tcp any any -> any 139 (content:"|5¢c 00|P|00|l|00|P|O O|E|0O0 5c|%)

alert tcp any any -> any 80 (content:!"GET")

ANOTE

A ! modifier negates the results of the entire content searchljfieis included. For example, if using
content:!"A"; within:50; and there are only 5 bytes of payload and there is no "A” inghmbytes, the
result will return a match. If there must be 50 bytes for adrafiatch, usésdataat as a pre-cursor to th
content.

9]

145

Changing content behavior

Thecontent keyword has a number of modifier keywords. The modifier kegls@hange how the previously speci-
fied content works. These modifier keywords are:

Table 3.5: Content Modifiers

Modifier Section
nocase B52
rawbytes B53
depth .04
offset B53
distance B50
within B51
http_clientbody | B53
http_cookie BL59
http_raw_cookie | BE5.T0D
http_header B511
http_raw_header | B5.12
http_method B.2.18
http_uri B.o.14
http_raw_uri BL5TH
http_statcode BEI6
http_statmsg BLIT
fastpattern BLI9

3.5.2 nocase

The nocase keyword allows the rule writer to specify that3hert should look for the specific pattern, ignoring case.
nocase modifies the previoomtent keyword in the rule.

Format

nocase;

Example

alert tcp any any -> any 21 (msg:"FTP ROOT"; content"USER ro ot"; nocase;)

3.5.3 rawbytes

The rawbytes keyword allows rules to look at the raw packt,dgnoring any decoding that was done by preproces-
sors. This acts as a modifier to the previous corfenil3.5idropt

format

rawbytes;

146

Example

This example tells the content pattern matcher to look atahetraffic, instead of the decoded traffic provided by the
Telnet decoder.

alert tcp any any -> any 21 (msg:"Telnet NOP"; content"|FF F 1], rawbytes;)

3.5.4 depth

The depth keyword allows the rule writer to specify how faoia packet Snort should search for the specified pattern.
depth modifies the previous ‘content’ keyword in the rule.

A depth of 5 would tell Snort to only look for the specified gatt within the first 5 bytes of the payload.

As the depth keyword is a modifier to the previaastent keyword, there must be a content in the rule beftepth
is specified.

This keyword allows values greater than or equal to the pattémgth being searched. The minimum allowed value is
1. The maximum allowed value for this keyword is 65535.

The value can also be set to a string value referencing ablamxtracted by thbyte _extract keyword in the same
rule.

The offset and depth keywords may be used together. You darseaepth with itself, distance, or within (to modify
the same content).

Format

depth:[<number>|<var_name>];

3.5.5 offset

The offset keyword allows the rule writer to specify wherestart searching for a pattern within a packet. offset
modifies the previous 'content’ keyword in the rule.

An offset of 5 would tell Snort to start looking for the speedipattern after the first 5 bytes of the payload.

As this keyword is a modifier to the previotsntent keyword, there must be a content in the rule befifiset is
specified.

This keyword allows values from -65535 to 65535.

The value can also be set to a string value referencing ablamtracted by thbyte _extract keyword in the same
rule.

The offset and depth keywords may be used together. You darsemffset with itself, distance, or within (to modify
the same content).

Format

offset:[<number>|<var_name>];

Example

The following example shows use of a combined content, bfésel depth search rule.

alert tcp any any -> any 80 (content:"cgi-bin/phf"; offset: 4; depth:20;)

147

3.5.6 distance
The distance keyword allows the rule writer to specify howifdo a packet Snort should ignore before starting to
search for the specified pattern relative to the end of theiquie pattern match.

This can be thought of as exactly the same thing as offset$8etol3.5)), except it is relative to the end of the last
pattern match instead of the beginning of the packet.

This keyword allows values from -65535 to 65535.

The distance and within keywords may be used together. Yownoause distance with itself, offset, or depth (to
modify the same content).

The value can also be set to a string value referencing ablamxtracted by thbyte _extract keyword in the same
rule.

Format

distance:[<byte_count>|<var_name>];

Example

The rule below maps to a regular expression of /ABGDEF/.

alert tcp any any -> any any (content:"ABC"; content:"DEF"; distance:1;)

3.5.7 within

The within keyword is a content modifier that makes sure thai@st N bytes are between pattern matches using the
content keyword (See Sectibn315.1). It's designed to bd irseonjunction with the distance (Sectibn315.6) rule
option.

This keyword allows values greater than or equal to patemgth being searched. The maximum allowed value for
this keyword is 65535.

The distance and within keywords may be used together. Yomatuse within with itself, offset, or depth (to modify
the same content).

The value can also be set to a string value referencing ablamtracted by thbyte _extract keyword in the same
rule.

Format

within:[<byte_count>|<var_name>];

Examples

This rule constrains the search of EFG to not go past 10 bastistipe ABC match.

alert tcp any any -> any any (content:"ABC"; content."EFG"; within:10;)

148

3.5.8 http_client_body

The httpclientbody keyword is a content modifier that restricts the sear¢ha body of an HTTP client request.

As this keyword is a modifier to the previoemitent keyword, there must be a contentin the rule before ‘latipnt body’
is specified.

The amount of data that is inspected with this option dependbepost _depth config option of Httpinspect. Pattern
matches with this keyword wont work wheost _depth is setto -1.

Format

http_client_body;

Examples

This rule constrains the search for the pattern "EFG” to @ive body of an HTTP client request.

alert tcp any any -> any 80 (content."ABC"; content."EFG"; h ttp_client_body;)

ANOTE

‘ Thehttp _client _body modifier is not allowed to be used with thevbytes modifier for the same content,.

3.5.9 http.cookie

The httpcookie keyword is a content modifier that restricts the detothe extracted Cookie Header field of a HTTP
client request or a HTTP server response (per the configurefiHttpinspedi2.216). The cookie buffer also includes
the header nam&gokie for HTTP requests oBet-Cookie for HTTP responses).

As this keyword is a modifier to the previoemtent keyword, there must be a contentin the rule behtipe _cookie

is specified. This keyword is dependent on tmable _cookie config option. The Cookie Header field will be
extracted only when this option is configured.eifable _cookie is not specified, the cookie still ends up in HTTP
header. Whemrnable _cookie is not specified, usingttp _cookie is the same as usirdtp _header .

The extracted Cookie Header field may be NORMALIZED, per thefiguration of Httpinspect (s€eZ.P.6).

Format

http_cookie;

Examples

This rule constrains the search for the pattern "EFG” to ttteaeted Cookie Header field of a HTTP client request.

alert tcp any any -> any 80 (content."ABC"; content."EFG"; h ttp_cookie;)

ANOTE

Thehttp _cookie modifier is not allowed to be used with trevbytes orfast _pattern modifiers for the
same content.

149

3.5.10 httpraw_cookie

The httpraw_cookie keyword is a content modifier that restricts the detirthe extracted UNNORMALIZED Cookie
Header field of a HTTP client request or a HTTP server resp(pesghe configuration of HttpInspdciZP.6).

As this keyword is a modifier to the previoemitent keyword, there must be a contentin the rule behtipe _raw _cookie
is specified. This keyword is dependent on éhable _cookie config option. The Cookie Header field will be ex-
tracted only when this option is configured.

Format

http_raw_cookie;

Examples

This rule constrains the search for the pattern "EFG” to ttteaeted Unnormalized Cookie Header field of a HTTP
client request.

alert tcp any any -> any 80 (content:"ABC"; content"EFG"; h ttp_raw_cookie;)

ANOTE

Thehttp _raw _cookie maodifier is not allowed to be used with tresvbytes , http _cookie orfast _pattern
modifiers for the same content.

3.5.11 http.header

The httpheader keyword is a content modifier that restricts the bdarthe extracted Header fields of a HTTP client
request or a HTTP server response (per the configurationtpfridpeclZ.216).

As this keyword is a modifier to the previoemitent keyword, there must be a contentin the rule behtipe _header
is specified.

The extracted Header fields may be NORMALIZED, per the conéition of Httplnspect (sde2.2.6).

Format

http_header;

Examples

This rule constrains the search for the pattern "EFG” to ttiaeted Header fields of a HTTP clientrequest ora HTTP
server response.

alert tcp any any -> any 80 (content."ABC"; content."EFG"; h ttp_header;)

ANOTE

‘ Thehttp _header maodifier is not allowed to be used with trevbytes modifier for the same content.

150

3.5.12 httpraw_header

The httpraw_header keyword is a content modifier that restricts the bdarihe extracted UNNORMALIZED Header
fields of a HTTP client request or a HTTP server response (ecanfiguration of HttplnspeCiZ2.6).

As this keyword is a modifier to the previoemitent keyword, there must be a contentin the rule behttpe _raw _header
is specified.

Format

http_raw_header;

Examples

This rule constrains the search for the pattern "EFG” to ttiaeted Header fields of a HTTP client request ora HTTP
server response.

alert tcp any any -> any 80 (content."ABC"; content."EFG"; h ttp_raw_header;)

NOTE
Thehttp _raw _header modifier is not allowed to be used with trevbytes , http _header orfast _pattern
modifiers for the same content.

3.5.13 http.method

The httpmethod keyword is a content modifier that restricts the $etr¢he extracted Method from a HTTP client
request.

As this keyword is a modifier to the previoemitent keyword, there must be a contentin the rule behttpe _method
is specified.

Format

http_method;

Examples
This rule constrains the search for the pattern "GET" to ttteaeted Method from a HTTP client request.

alert tcp any any -> any 80 (content."ABC"; content"GET"; h ttp_method;)

NOTE

Thehttp _method modifier is not allowed to be used with trevbytes modifier for the same content.

3.5.14 http.uri

The httpuri keyword is a content modifier that restricts the seardhédNORMALIZED request URI field . Using a
content rule option followed by a httpri modifier is the same as using a uricontent by itself (E€&28).

As this keyword is a modifier to the previooantent keyword, there must be a content in the rule befute _uri
is specified.

151

Format

http_uri;

Examples

This rule constrains the search for the pattern "EFG” to t@RWMALIZED URI.

alert tcp any any -> any 80 (content."ABC"; content."EFG"; h ttp_uri;)

ANOTE

‘ Thehttp _uri modifier is not allowed to be used with trevbytes modifier for the same content.

3.5.15 httpraw _uri

The httpraw_uri keyword is a content modifier that restricts the seardhédJNNORMALIZED request URI field .

As this keyword is a modifier to the previoemitent keyword, there must be a contentin the rule behttpe _raw _uri
is specified.

Format

http_raw_uri;
Examples
This rule constrains the search for the pattern "EFG” to tMNORMALIZED URI.

alert tcp any any -> any 80 (content."ABC"; content."EFG"; h ttp_raw_uri;)

ANOTE

Thehttp _raw _uri modifier is not allowed to be used with trevbytes , http _uri orfast _pattern mod-
ifiers for the same content.

3.5.16 http.stat.code

The httpstatcode keyword is a content modifier that restricts the seaydhe extracted Status code field from a
HTTP server response.

As this keyword is a modifier to the previoemitent keyword, there must be a contentin the rule behtipe _stat _code
is specified.

The Status Code field will be extracted only if the extendgabnsenspection is configured for the Httplnspect (see

Z23).

Format

http_stat_code;

152

Examples

This rule constrains the search for the pattern "200” to #ieaeted Status Code field of a HTTP server response.

alert tcp any any -> any 80 (content:"ABC"; content:"200"; h ttp_stat_code;)

ANOTE

Thehttp _stat _code modifier is not allowed to be used with thewbytes orfast _pattern modifiers for
the same content.

3.5.17 http.stat. msg

The httpstatmsg keyword is a content modifier that restricts the seartha@xtracted Status Message field from a
HTTP server response.

As this keyword is a modifier to the previoemitent keyword, there must be a contentin the rule behttpe _stat _msg
is specified.

The Status Message field will be extracted only if the extdm@@onsenspection is configured for the Httplnspect

(sedZ206).

Format

http_stat msg;

Examples

This rule constrains the search for the pattern "Not Foundhe extracted Status Message field of a HTTP server
response.

alert tcp any any -> any 80 (content."ABC"; content:"Not Fou nd"; http_stat msg;)

ANOTE

Thehttp _stat _msg modifier is not allowed to be used with thevbytes or fast _pattern modifiers for
the same content.

3.5.18 httpencode

Thehttp _encode keyword will enable alerting based on encoding type preseatHTTP client request or a HTTP
server response (per the configuration of HttpInspecilp.2.6

There are eleven keywords associated wiith _encode . The keywords 'uri’, ’header’ and 'cookie’ determine the
HTTP fields used to search for a particular encoding type Keevords 'utf8’, ‘doubleencode’, 'nonascii’, 'base36’,
'uencode’, 'ascii’, 'iisencode’ and 'bardyte’ determine the encoding type which would trigger thertal These
keywords can be combined using a OR operation. Negatiofoiwed on these keywords.

The config option 'normalizéneaders’ needs to be turned on for rules to work with the kegivweeader’. The keyword
'cookie’ is dependent on config options 'enalgi@okie’ and 'normalizecookies’ (se€2Z.216). This rule option will not
be able to detect encodings if the specified HTTP fields ar®l@RMALIZED.

153

| Option | Description |

uri Check for the specified encoding type in HTTP client requésk fi¢ld.

header Check for the specified encoding type in HTTP request or HTEEponse header
fields (depending on the packet flow)

cookie Check for the specified encoding type in HTTP request or HTEEpaonse cookie
header fields (depending on the packet flow)

utf8 Check for utf8 encoding in the specified buffer

double _encode | Check for double encoding in the specified buffer

non _ascii Check for non-ASCII encoding in the specified buffer

base36 Check for base36 encoding in the specified buffer

uencode Check for u-encoding in the specified buffer

bare _byte Check for bare byte encoding in the specified buffer

ascii Check for ascii encoding in the specified buffer

iis _encode Check for IS Unicode encoding in the specified buffer

Format

http_encode:<http buffer type>, [!]<encoding type>

http_encode:[urilheader|cookie], [[<utf8|double_en code|non_ascii|base36|uencode|bare_byte|asciiliis_e
Examples

alert tcp any any -> any any (msg:"UTF8/UEncode Encoding pre sent"; http_encode:uri,utf8|uencode;)

alert tcp any any -> any any (msg:"No UTF8"; http_encode:uri Jutf8;)

ANOTE

Negation(!) and OR() operations cannot be used in conjunction with each othehfehttp _encode key-
word. The OR and negation operations work only on the encptiipe field and not on http buffer typ
field.

[©)

3.5.19 fastpattern

Thefast _pattern keyword is a content modifier that sets the content withinla to be used with the fast pattern
matcher. Since the default behavior of fast pattern deteatiuin is to use the longest content in the rule, it is uséful i
a shorter content is more "unique” than the longer conteeamng the shorter content is less likely to be found in a
packet than the longer content.

The fast pattern matcher is used to select only those rugsdive a chance of matching by using a contentin the rule
for selection and only evaluating that rule if the conterfibisnd in the payload. Though this may seem to be overhead,
it can significantly reduce the number of rules that need tevaduated and thus increases performance. The better
the content used for the fast pattern matcher, the lesylikelrule will needlessly be evaluated.

As this keyword is a modifier to the previoemitent keyword, there must becantent rule option in the rule before
fast _pattern is specified. Théast _pattern option may be specified only once per rule.

ANOTE

The fast _pattern modifier cannot be used with the following http content medsfi http _cookie |,
http _raw _uri , http _raw _header , http _raw _cookie , http _stat _code, http _stat _msg. Note, however,
that it is okay to use thfast _pattern modifier if another http content modifier not mentioned abiswesed
in combination with one of the above to modify the same canten

154

NOTE
Thefast _pattern modifier can be used with negated contents only if those atsmtae not modified with
offset , depth , distance orwithin

Format

Thefast _pattern option can be used alone or optionally take arguments. Whed alone, the meaning is simply
to use the specified content as the fast pattern contentdauté.

fast_pattern;

The optional argumeranly can be used to specify that the content should only be usdatiddast pattern matcher
and should not be evaluated as a rule option. This is usefueXample, if a known content must be located in the
payload independent of location in the payload, as it sdwetite necessary to evaluate the rule option. Note that (1)
the modified content must be case insensitive since pateensserted into the pattern matcher in a case insensitive
manner, (2) negated contents cannot be used and (3) consemntet have any positional modifiers sucltofiset

depth , distance or within

fast_pattern:only;
The optional argumenrtbffset> <length> can be used to specify that only a portion of the content shbelused
for the fast pattern matcher. This is useful if the patterveis/ long and only a portion of the pattern is necessary to

satisfy "uniqueness” thus reducing the memory requireddrmeghe entire pattern in the fast pattern matcher.

fast_pattern:<offset>,<length>;

\NOTE

The optional argumentsly and<offset>,<length> are mutually exclusive.

Examples

This rule causes the pattern "IJKLMNO” to be used with the feegtern matcher, even though it is shorter than the
earlier pattern "ABCDEFGH”".

alert tcp any any -> any 80 (content:"ABCDEFGH"; content:"l JKLMNO"; fast_pattern;)

This rule says to use the content "IJKLMNOQO” for the fast pattmatcher and that the content should only be used for
the fast pattern matcher and not evaluated @st@nt rule option.

alert tcp any any -> any 80 (content"ABCDEFGH"; content:"l JKLMNO"; nocase; fast_pattern:only;)
This rule says to use "JKLMN" as the fast pattern contentdilltevaluate theontent rule option as "IJKLMNO”.

alert tcp any any -> any 80 (content:"ABCDEFGH"; content:"l JKLMNO"; fast_pattern:1,5;)

3.5.20 uricontent

Theuricontent keyword in the Snort rule language searches the NORMALIZ&fuest URI field. This is equiv-
alent to using théttp _uri modifier to acontent keyword. As such if you are writing rules that include thingat
are normalized, such as %2f or directory traversals, theles will not alert. The reason is that the things you are
looking for are normalized out of the URI buffer.

For example, the URI:

155

Iscripts/..%c0%af../winnt/system32/cmd.exe?/c+ver
will get normalized into:
Iwinnt/system32/cmd.exe?/c+ver
Another example, the URI:
Icgi-bin/aaaaaaaaaaaaaaaaaaaaaaaaaal..%252fp%68f?
will get normalized into:
Icgi-bin/phf?

When writing auricontent rule, write the content that you want to find in the context tha URI will be normalized.
For example, if Snort normalizes directory traversals, doimclude directory traversals.
You can write rules that look for the non-normalized contgnusing the content option. (See Secfion3.5.1)

uricontent can be used with several of the modifiers available tathtent keyword. These include:

Table 3.6: Uricontent Modifiers

Modifier Section
nocase B52
depth L.0.4
offset B55
distance B56
within B51
fast pattern B5TI9

This option works in conjunction with the HTTP Inspect pregessor specified in SectibnZ12.6.

Format

uricontent:[!]"<content string>";

ANOTE

uricontent cannot be modified by mwbytes modifier or any of the other HTTP modifiers. If you wish to
search the UNNORMALIZED request URI field, use tiip _raw _uri modifier with acontent option.

3.5.21 urilen

Theurilen keyword in the Snort rule language specifies the exact letigghminimum length, the maximum length,
or range of URI lengths to match.

Format

urilen:min<>max;
urilen:[<|>]<number>;

The following example will match URIs that are 5 bytes long:

156

urilen:5;

The following example will match URIs that are shorter thanyfes:
urilen:<5;

The following example will match URIs that are greater thebytes and less than 10 bytes:
urilen:5<>10;

This option works in conjunction with the HTTP Inspect pregessor specified in SectibnZ12.6.

3.5.22 isdataat

Verify that the payload has data at a specified locationpoptly looking for data relative to the end of the previous
content match.

Format

isdataat:[![<int>[, relative[rawbytes];

Example

alert tcp any any -> any 111 (content:"PASS"; isdataat:50,r elative; \
content:!"|0a|"; within:50;)

This rule looks for the string PASS exists in the packet, themifies there is at least 50 bytes after the end of the string
PASS, then verifies that there is not a newline characteim/ bytes of the end of the PASS string.

When therawbytes modifier is specified witlisdataat , it looks at the raw packet data, ignoring any decoding that
was done by the preprocessors. This modifier will work withrthative =~ modifier as long as the previous content
match was in the raw packet data.

A ! modifier negates the results of the isdataat test. It wilttalea certain amount of data is not present within
the payload. For example, the rule with modifiesstent:"foo"; isdataat:!10,relative; would alert if there
were not 10 bytes after "foo” before the payload ended.

3.5.23 pcre

The pcre keyword allows rules to be written using perl contyp@tregular expressions. For more detail on what can
be done via a pcre regular expression, check out the PCRE iteiis//www.pcre.org

Format

pere:[!]"(/<regex>/|m<delim><regex><delim>)[ismxAEG RUBPHMCOIDKYS]";

The post-re modifiers set compile time flags for the regularession. See tablESB[7.13.8, 3.9 for descriptions of
each modifier.

ANOTE

The modifiers R (relative) and B (rawbytes) are not allowethwainy of the HTTP modifiers such as U, |, P,
H,D,M,C,K,SandY.

157

http://www.pcre.org

Table 3.7: Perl compatible modifiers fiere
i | case insensitive
s | include newlines in the dot metacharacter
m | By default, the string is treated as one big line of charactérand $ match at
the beginning and ending of the string. When m is set, ~ andthmmmediately
following or immediately before any newline in the buffes,waell as the very start
and very end of the buffer.
X | whitespace data characters in the pattern are ignored ewbem escaped or in
side a character class

Table 3.8: PCRE compatible modifiers fure
A | the pattern must match only at the start of the buffer (sanmig as
E | Set $ to match only at the end of the subject string. Withou$ Blso matcheg
immediately before the final character if it is a newline (bat before any othef
newlines).
G | Inverts the "greediness” of the quantifiers so that they ategreedy by default
but become greedy if followed by "?".

Example

This example performs a case-insensitive search for theydLAH in the payload.

alert ip any any -> any any (pcre:"/BLAH/")

ANOTE

Snort’'s handling of multiple URIs with PCRE does not work apected. PCRE when used without| a
uricontent only evaluates the first URI. In order to use pcre to inspdctURlls, you must use either a
content or a uricontent.

3.5.24 filedata

This option is used to place the cursor (used to walk the ggekdoad in rules processing) at the beginning of either
the entity body of a HTTP response or the SMTP body data. Hsrojtion to work with HTTP response, certain
HTTP Inspect options such astended _response _inspection andinspect _gzip (for decompressed gzip data)
needs to be turned on. 9ee 21 2.6 for more details.

When used with argumemtime it places the cursor at the beginning of the base64 decod&BEMittachment or
base64 decoded MIME body. This is dependent on the SMTP copfignenable _mime_decoding . Sed 2217 for
more details.

Format

file_data;
file_data:mime;

This option matches if there is HTTP response body or SMTR/lmwdSMTP MIME base64 decoded data. This
option will operate similarly to théce _stub _data option added with DCE/RPC2, in that it simply sets a refeeenc
for other relative rule options (byte test, byte jump, pt¢cedise. Thidile _data can pointto either a file or a block
of data.

158

Table 3.9: Snort specific modifiers fpere
R | Match relative to the end of the last pattern match. (Simtdatistance:0;)
U | Match the decoded URI buffers (Similar toicontent ~ andhttp _uri). This
modifier is not allowed with the unnormalized HTTP requesbuffer modifier(l)
for the same content.
| | Matchthe unnormalized HTTP request uri buffer (Similaittp _raw _uri). This
modifier is not allowed with the HTTP request uri buffer moealiflJ) for the same
content.
Match unnormalized HTTP request body (Similahttp _client _body)
Match normalized HTTP request or HTTP response header K8into
http _header). This modifier is not allowed with the unnormalized HTTPuegt
or HTTP response header modifier(D) for the same content.
D | Match unnormalized HTTP request or HTTP response headenilé8i to
http _raw _header). This modifier is not allowed with the normalized HTTP re-
quest or HTTP response header modifier(H) for the same conten
M | Match normalized HTTP request method (Similahttp _method)
C | Match normalized HTTP request or HTTP response cookie (&imio
http _cookie). This modifier is not allowed with the unnormalized HTTPueqt
or HTTP response cookie modifier(K) for the same content.
K | Match unnormalized HTTP request or HTTP response cookiei(@i to
http _raw _cookie). This modifier is not allowed with the normalized HTTP re-
guest or HTTP response cookie modifier(C) for the same canten
Match HTTP response status code (Similahttp _stat _code)
Match HTTP response status message (Similattpo _stat _msg)
Do not use the decoded buffers (Similar to rawbytes)
Override the configured pcre match limit and pcre match In@dursion for this
expression (See sectibn 2]1.3). It completely ignoresithigsl while evaluating
the pcre pattern specified.

I

O|m <|wn

ANOTE

‘ Multiple base64 encoded attachments in one packet ardanepel

Example
alert tcp any 80 -> any any(msg:"foo at the start of http respo nse body"; \
file_data; content."foo"; nocase; within:3;)

alert tcp any any -> any any(msg:"MIME BASE64 Encoded Data’; \
file_data:mime; content:"foo"; within:10;)

3.5.25 baseb4lecode

This option is used to decode the base64 encoded data. Thoe épparticularly useful in case of HTTP headers such
as HTTP authorization headers. This option unfolds the batare decoding it.

Format

base64 decode[:[bytes <bytes to_decode>][,][offset <o ffset>[, relative]]];

159

| Option Description |
bytes Number of base64 encoded bytes to decode. This argumerst palsitive and
non-zero values only. When this option is not specified wé kmo base64 en-
coded data till either the end of header line is reached ooépdcket payload ig
reached.

offset Determines the offset relative to the dp& when the optiorelative is specified
or relative to the start of the packet payload to begin inspeof base64 encoded
data. This argument takes positive and non-zero values only
relative Specifies the inspection for base64 encoded data is retatihe doeptr.

The above arguments base64 _decode are optional.

ANOTE

This option can be extended to protocols with folding simiteHTTP. If folding is not present the search fpr
base64 encoded data will end when we see a carriage retune deéd or both without a following space or
tab.
This option needs to be used in conjunction viitkke64 _data for any other relative rule options to work gn
base64 decoded buffer.

Examples

alert tcp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"Base64 Encoded Data"; base64 decode; base64 data; \
content:"foo bar"; within:20;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any \

(msg:"Authorization NTLM"; content:"Authorization: NTL M";
base64 decode:relative; base64 data; content:"NTLMSSP "o\
within:20;)

alert tcp any any -> any any (msg:"Authorization NTLM"; \
content;"Authorization:"; http_header; \
base64 decode:bytes 12, offset 6, relative; base64 data; \
content:"NTLMSSP"; within:8;)

3.5.26 base64lata
This option is used to place the cursor (used to walk the gaik@oad in rules processing) at the beginning of the

base64 decode buffer if present. This option does not tak@uments. The rule optidiase64 _decode needs to
be specified before thHmse64 _data option.

Format

base64 data;

This option matches if there is base64 decoded buffer. Ttist will operate similarly to théle _data option, in
that it simply sets a reference for other relative rule apgipbyte test, byte jump, pcre) to use.

ANOTE

Any non-relative rule options in the rule will reset the ansloeptr) from base64 decode buffer.
Fast pattern content matches are not allowed with this buffe

160

Example

alert tcp any any -> any any (msg:"Authorization NTLM"; \
content:"Authorization:"; http_header; \
base64 decode:bytes 12, offset 6, relative; base64 data; \
content:"NTLMSSP"; within:8;)

3.5.27 bytetest

Test a byte field against a specific value (with operator).aBbgpof testing binary values or converting representative
byte strings to their binary equivalent and testing them.

For a more detailed explanation, please read Setfiod 3.9.5.

Format

byte_test:<bytes to convert>, [!]<operator>, <value>, <o ffset> \
[, relative][, <endian>][, string, <number type>][, dce];

bytes =1-10
operator =< | ’= | > & |7
value = 0 - 4294967295
offset = -65535 to 65535
[Option | Description |

bytes _to _convert Number of bytes to pick up from the packet. The allowed vakresl to 10 when used withodte .
If used withdce allowed values are 1, 2 and 4.
operator Operation to perform to test the value:

e < -lessthan

e > - greater than
e =-equal

e & - bhitwise AND
e - bitwise OR

value Value to test the converted value against

offset Number of bytes into the payload to start processing
relative Use an offset relative to last pattern match

endian Endian type of the number being read:

e big - Process data as big endian (default)

o little - Process data as little endian
string Data is stored in string format in packet
number type Type of number being read:

e hex - Converted string data is represented in hexadecimal
e dec - Converted string data is represented in decimal
e oct - Converted string data is represented in octal

dce Let the DCE/RPC 2 preprocessor determine the byte ordereofdiue to be converted. See sectipn
2213 for a description and examplESTZ2.13 for quickresfee).

Any of the operators can also incluti¢éo check if the operator is not true.!lis specified without an operator, then the operator is set to

ANOTE

Snort uses the C operators for each of these operators. & thygerator is used, then it would be the same as usiftta & value) {
do_something()}

Examples

alert udp $EXTERNAL_NET any -> $HOME_NET any \

161

(msg:"AMD procedure 7 plog overflow"; \
content:"|00 04 93 F3|"; \

content:"|00 00 00 07|"; distance:4; within:4; \
byte_test:4, >, 1000, 20, relative;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow"; \
content:"|00 04 93 F3|"; \
content:"|00 00 00 07|"; distance:4; within:4; \
byte_test:4, >, 1000, 20, relative;)

alert udp any any -> any 1234 \
(byte_test:4, =, 1234, 0, string, dec; \
msg:“got 1234!";)

alert udp any any -> any 1235 \
(byte_test:3, =, 123, 0, string, dec; \
msg:“"got 123!";)

alert udp any any -> any 1236 \
(byte_test:2, =, 12, 0, string, dec; \
msg:“got 12!";)

alert udp any any -> any 1237 \
(byte_test:10, =, 1234567890, 0, string, dec; \
msg:“got 1234567890!";)

alert udp any any -> any 1238 \
(byte_test:8, =, Oxdeadbeef, O, string, hex; \
msg:“"got DEADBEEF!";)

3.5.28 bytejump

For a more detailed explanation, please read Seffion 3.9.5.

Format

byte_jump:<bytes_to_convert>, <offset> \

[, relative][, multiplier <mult_value>], <endian>][, st
[, align][, from_beginning][, post_offset <adjustment va

bytes =1-10

offset = -65535 to 65535
mult_value = 0 - 65535
post_offset = -65535 to 65535

Thebyte _jump keyword allows rules to be written for length encoded protsdrivially. By having an option that reads the length ofaatpn of
data, then skips that far forward in the packet, rules canritew that skip over specific portions of length-encodeat@rols and perform detection
in very specific locations.

Thebyte _jump option does this by reading some number of bytes, convar theheir numeric representation, move that many bytesdomhand
set a pointer for later detection. This pointer is known asdétect offset end pointer, or dpé.

162

ring, <number_type>J\

[Option | Description |

bytes _to _convert Number of bytes to pick up from the packet. The allowed vakresl to 10 when used withodte .
If used withdce allowed values are 1, 2 and 4.

offset Number of bytes into the payload to start processing

relative Use an offset relative to last pattern match

multiplier <value > Multiply the number of calculated bytes byvalue > and skip forward that number of bytes.

big Process data as big endian (default)

little Process data as little endian

string Data is stored in string format in packet

hex Converted string data is represented in hexadecimal

dec Converted string data is represented in decimal

oct Converted string data is represented in octal

align Round the number of converted bytes up to the next 32-bit deyn

from _beginning Skip forward from the beginning of the packet payload indte&from the current position in the
packet.

post _offset <value > | Skip forward or backwards (positive of negative valtg) <value > number of bytes after the other
jump options have been applied.

dce Let the DCE/RPC 2 preprocessor determine the byte ordereofahue to be converted. See sectipn
213 for a description and examplESTZP.13 for quickresfee).

Example

alert udp any any -> any 32770:34000 (content:"|00 01 86 BS8|" i\
content:"|00 00 00 01|"; distance:4; within:4; \
byte_jump:4, 12, relative, align; \
byte_test:4, >, 900, 20, relative; \
msg:“statd format string buffer overflow";)

3.5.29 byteextract

Thebyte _extract keyword is another useful option for writing rules agaimstgth-encoded protocols. It reads in some number of bytbes tihe
packet payload and saves it to a variable. These variabiebeceeferenced later in the rule, instead of using hardd¢edkies.

ANOTE

| Only twobyte _extract variables may be created per rule. They can be re-used irathe sile any number of times.

Format

byte_extract:<bytes_to_extract>, <offset>, <name> \
[, relative][, multiplier <multiplier value>][, <endian> \
[, string, <number_type>][, align <align value>][, dce]

[Option | Description

bytes _to _convert Number of bytes to pick up from the packet

offset Number of bytes into the payload to start processing

name Name of the variable. This will be used to reference the faéian other rule options.

relative Use an offset relative to last pattern match

multiplier <value > | Multiply the bytes read from the packet byalue > and save that number into the variable.

big Process data as big endian (default)

little Process data as little endian

dce Use the DCE/RPC 2 preprocessor to determine the byte-ogdefhe DCE/RPC 2 preprocessor myst
be enabled for this option to work.

string Data is stored in string format in packet

hex Converted string data is represented in hexadecimal

dec Converted string data is represented in decimal

oct Converted string data is represented in octal

align <value > Round the number of converted bytes up to the rewdlue >-byte boundary.<value > may be2
or4.

Other options which use byteextract variables

A byte _extract rule option detects nothing by itself. Its use is in extragtpacket data for use in other rule options. Here is a listaafgs where
byte _extract variables can be used:

163

[Rule Option | Arguments that Take Variables
content /uricontent offset , depth , distance , within
byte _test offset , value
byte _jump offset
isdataat offset

Examples

This example uses two variables to:

e Read the offset of a string from a byte at offset 0.

e Read the depth of a string from a byte at offset 1.

e Use these values to constrain a pattern match to a smalker are

alert tcp any any -> any any (byte_extract:1, 0, str_offset; \
byte_extract:1, 1, str_depth; \

content:"bad stuff'; offset:str_offset; depth:str_dept

h; \

msg:"Bad Stuff detected within field";)

3.5.30 ftpbounce

The ftpbounce keyword detects FTP bounce attacks.

Format

ftpbounce;

Example

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP PORT b ounce attempt’; \

flow:to_server,established; content:"PORT"; nocase; ft

pbounce; pcre:"/"PORT/smi";\

classtype:misc-attack; sid:3441; rev:1;)

3.5.31 asnl

The ASN.1 detection plugin decodes a packet or a portion aefciet, and looks for various malicious encodings.

Multiple options can be used in an 'asnl’ option and the iegplbgic is boolean OR. So if any of the arguments evaluateuasthe whole option

evaluates as true.

The ASN.1 options provide programmatic detection cap#gslias well as some more dynamic type detection. If an opta@nan argument, the
option and the argument are separated by a space or a commaréfarred usage is to use a space between option and atgumen

Format

asnl:[bitstring_overflow][,

double_overflow][, oversi

ze_length <value>][, absolute_offset <value>|relative_

Option

Description

offset <value>];

bitstring ~ _overflow

Detects invalid bitstring encodings that are known to beatefy exploitable.

double _overflow

Detects a double ASCII encoding that is larger than a standaffer. This is known to be an ex
ploitable function in Microsoft, but it is unknown at thisrte which services may be exploitable.

oversize _length

<value >

Compares ASN.1 type lengths with the supplied argument. siinéax looks like, “oversizdéength
500”. This means that if an ASN.1 type is greater than 5007 thés keyword is evaluated as tru
This keyword must have one argument which specifies thelleiogtompare against.

D

absolute _offset

<value >

This is the absolute offset from the beginning of the packeair example, if you wanted to decod
snmp packets, you would say “absolgfiset 0”. absolute _offset has one argument, the offsg
value. Offset may be positive or negative.

relative _offset

<value >

This is the relative offset from the last content
relative _offset has one argument, the offset number. So if you wanted to

decoding and ASN.1 sequence right after the content “foo”pu ywould specify
‘content:"foo"; asnl:bitstring_overflow, relative_off set 0" . Offset values may|

match or ehbgst/jump.

pt

start

be positive or negative.

164

Examples

alert udp any any -> any 161 (msg:"Oversize SNMP Length"; \
asnl:oversize_length 10000, absolute_offset 0;)

alert tcp any any -> any 80 (msg:"ASN1 Relative Foo"; content "foo"; \
asnl:bitstring_overflow, relative_offset 0;)

3.5.32 cvs

The CVS detection plugin aids in the detection of: Bugtr@g84, CVE-2004-0396: "Malformed Entry Modified and Uncheddlag insertion”.

Default CVS server ports are 2401 and 514 and are includdeeidefault ports for stream reassembly.

ANOTE

| This plugin cannot do detection over encrypted sessiogs SSH (usually port 22).

Format

cvs:<option>;

Option Description
invalid-entry Looks for an invalid Entry string, which is a way of causingeap overflow (see CVE-2004-0396)
and bad pointer derefenece in versions of CVS 1.11.15 armtéef

Examples

alert tcp any any -> any 2401 (msg:"CVS Invalid-entry"; \
flow:to_server,established; cvs:invalid-entry;)

3.5.33 dceiface

See the DCE/RPC 2 Preprocessor sedfion2.2.13 for a désergstd examples of using this rule option.

3.5.34 dceopnum

See the DCE/RPC 2 Preprocessor sedflon2.2.13 for a désargstd examples of using this rule option.

3.5.35 dcestub_data

See the DCE/RPC 2 Preprocessor sedfilon2.2.13 for a désargstd examples of using this rule option.

3.5.36 sslversion

See the SSL/TLS Preprocessor sediion212.11 for a deseriatid examples of using this rule option.

3.5.37 sslstate

See the SSL/TLS Preprocessor sediion 212.11 for a deseriatid examples of using this rule option.

3.5.38 Payload Detection Quick Reference

Table 3.10: Payload detection rule option keywords

Keyword Description

and trigger response based on that data.

content The content keyword allows the user to set rules that searcspecific content in the packet paylog

165

o

[

ne

=}

rawbytes The rawbytes keyword allows rules to look at the raw packéd,dgnoring any decoding that wa
done by preprocessors.

depth The depth keyword allows the rule writer to specify how faoia packet Snort should search for t
specified pattern.

offset The offset keyword allows the rule writer to specify wherestart searching for a pattern within
packet.

distance The distance keyword allows the rule writer to specify homirito a packet Snort should ignore befo
starting to search for the specified pattern relative to tttead the previous pattern match.

within The within keyword is a content modifier that makes sure than@st N bytes are between patte
matches using the content keyword.

uricontent The uricontent keyword in the Snort rule language seardieadrmalized request URI field.

isdataat The isdataat keyword verifies that the payload has data atafigol location.

pcre The pcre keyword allows rules to be written using perl coibpatregular expressions.

byte _test The bytetest keyword tests a byte field against a specific value (withrator).

byte _jump The bytejump keyword allows rules to read the length of a portion dagdthen skip that far forward
in the packet.

ftpbounce The ftpbounce keyword detects FTP bounce attacks.

asnl The asnl detection plugin decodes a packet or a portion oflkepaand looks for various maliciou
encodings.

cvs The cvs keyword detects invalid entry strings.

dce _iface See the DCE/RPC 2 Preprocessor sedfion 2.2.13.

dce _opnum See the DCE/RPC 2 Preprocessor sedfion 2.2.13.

dce _stub _data See the DCE/RPC 2 Preprocessor sedfion 2.2.13.

3.6 Non-Payload Detection Rule Options

3.6.1 fragoffset

The fragoffset keyword allows one to compare the IP fragnoéfaet field against a decimal value. To catch all the firggdinants of an IP session,

you could use the fragbits keyword and look for the More fragta option in conjunction with a fragoffset of 0.

Format

fragoffset:[!|<|>]<number>;

Example

alert ip any any -> any any \
(msg:"First Fragment"; fragbits:M; fragoffset:0;)

3.6.2

The ttl keyword is used to check the IP time-to-live valueisTd¢iption keyword was intended for use in the detection afereute attempts. This

keyword takes numbers from 0 to 255.

Format

ttlh[<, >, =, <=, >=]<number>;
ttl:[<number>]-[<number>];

Example

This example checks for a time-to-live value that is less tha

ttl:<3;

This example checks for a time-to-live value that between8@a

166

ttl:3-5;

This example checks for a time-to-live value that betweend:
ttl:-5;

This example checks for a time-to-live value that betweendb255.
ttl:5-;

Few other examples are as follows:

ttl:<=5;
ttl:>=5;
ttl:=5;

The following examples are NOT allowed by ttl keyword:

ttl:=>5;
ttl:=<5;
ttl:5-3;

3.6.3 tos

The tos keyword is used to check the IP TOS field for a specificeva

Format

tos:[!]<number>;

Example

This example looks for a tos value that is not 4
tos:14;

3.6.4 id

The id keyword is used to check the IP ID field for a specific alBome tools (exploits, scanners and other odd prograt)séeld specifically
for various purposes, for example, the value 31337 is vepulao with some hackers.

Format

id:<number>;

Example

This example looks for the IP ID of 31337.

id:31337;

167

3.6.5 ipopts

The ipopts keyword is used to check if a specific IP option éspnt.

The following options may be checked:

rr - Record Route

eol - End of list

nop - No Op

ts - Time Stamp

sec - IP Security

esec - IP Extended Security
Isrr - Loose Source Routing
Isrre - Loose Source Routing (For MS99-038 and CVE-1999-0909)
ssIr - Strict Source Routing
satid - Stream identifier

any - any IP options are set

The most frequently watched for IP options are strict andéogource routing which aren’t used in any widespread iatexpplications.

Format

ipopts:<rr|eol|nop|ts|sec|esec]lsrr|Isrre|ssrr|sati djany>;

Example

This example looks for the IP Option of Loose Source Routing.

ipopts:lsrr;

Warning

Only a single ipopts keyword may be specified per rule.

3.6.6 fragbits

Thefraghits keyword is used to check if fragmentation and reserved biset in the IP header.

The following bits may be checked:

M - More Fragments
D - Don’t Fragment
R - Reserved Bit

The following modifiers can be set to change the match caiteri

+ match on the specified bits, plus any others
* match if any of the specified bits are set
I match if the specified bits are not set

Format

fragbits:[+*]<[MDR]>;

Example

This example checks if the More Fragments bit and the Do ragifent bit are set.

fragbits:MD+;

168

3.6.7 dsize

The dsize keyword is used to test the packet payload size. My be used to check for abnormally sized packets. In ma®scé is useful for
detecting buffer overflows.

Format
dsize:min<>max;
dsize:[<|>]<number>;

Example

This example looks for a dsize that is between 300 and 40Gbyte

dsize:300<>400;

Warning

dsize will fail on stream rebuilt packets, regardless ofdize of the payload.

3.6.8 flags

The flags keyword is used to check if specific TCP flag bits azeqont.

The following bits may be checked:

F - FIN - Finish (LSB in TCP Flags byte)

S - SYN - Synchronize sequence numbers

R - RST - Reset

P -PSH - Push

A - ACK - Acknowledgment

U - URG - Urgent

1 - CWR - Congestion Window Reduced (MSB in TCP Flags byte)

2 - ECE - ECN-Echo (If SYN, then ECN capable. Else, CE flag in |IBde is set)
0 - No TCP Flags Set

The following modifiers can be set to change the match caiteri

+ - match on the specified bits, plus any others
* - match if any of the specified bits are set
I - match if the specified bits are not set

To handle writing rules for session initiation packets sasHECN where a SYN packet is sent with the previously resepitsdl and 2 set, an
option mask may be specified. A rule could check for a flagsevafi,12 if one wishes to find packets with just the syn bitardkgss of the values
of the reserved bits.

Format

flags:[I[*+]<FSRPAU120>[, <FSRPAU12>];

Example

This example checks if just the SYN and the FIN bits are sabrigg reserved bit 1 and reserved bit 2.

alert tcp any any -> any any (flags:SF,12;)

169

3.6.9 flow

The flow keyword is used in conjunction with TCP stream reausg (see SectioRZA.2). It allows rules to only apply taaierdirections of the
traffic flow.

This allows rules to only apply to clients or servers. Thisvas packets related to $HOMBET clients viewing web pages to be distinguished
from servers running in the $SHOMBET.

The established keyword will replace tfegs:+A used in many places to show established TCP connections.

Options
| Option | Description
to _client Trigger on server responses from A to B
to _server Trigger on client requests from A to B
from _client Trigger on client requests from A to B
from _server Trigger on server responses from A to B
established Trigger only on established TCP connections
not _established Trigger only when no TCP connection is established
stateless Trigger regardless of the state of the stream processofu{use packets that are designed to cause
machines to crash)
no_stream Do not trigger on rebuilt stream packets (useful for dsize stneam5)
only _stream Only trigger on rebuilt stream packets
no_frag Do not trigger on rebuilt frag packets
only _frag Only trigger on rebuilt frag packets
Format

flow:[(established|not_established|stateless)]

[,(to_client|to_server|from_client|from_server)]
[,(no_stream|only_stream)]
[,(no_frag|only_frag)];

Examples

alert tcp !$HOME_NET any -> $HOME_NET 21 (msg:"cd incoming d etected"; \
flow:from_client; content:"CWD incoming"; nocase;)

alert tcp !$HOME_NET 0 -> $HOME_NET 0 (msg:"Port 0 TCP traffi ¢\
flow:stateless;)

3.6.10 flowbits

Theflowbits keyword is used in conjunction with conversation trackingnf the Stream preprocessor (see Selcfion?.2.2). It alloles to track
states during a transport protocol session. The flowbit®og most useful for TCP sessions, as it allows rules to gealy track the state of an
application protocol.

There are eight keywords associated with flowbits. Most efdhtions need a user-defined name for the specific statestbaing checked. This
string should be limited to any alphanumeric string inahgdperiods, dashes, and underscores. The keywords setggld take an optional
argument which specifies the group to which the keywords lvglbng. When no group name is specified the flowbits will bgltma default

group. All the flowbits in a particular group (with an exceptiof default group) are mutually exclusive. A particulamfloannot belong to more
than one group.

[Option [Description |

set Sets the specified state for the current flow and unsets albter flowbits in a group when 4
GROUPRPNAME is specified.

unset Unsets the specified state for the current flow.

toggle Sets the specified state if the state is unset and unsetseatttier flowbits in a group when a
GROUPNAME is specified, otherwise unsets the state if the statetis s

isset Checks if the specified state is set.

isnotset Checks if the specified state is not set.

noalert Cause the rule to not generate an alert, regardless of thefitbe detection options.

reset Reset all states on a given flow.

170

Format

flowbits:[set|unset|togglelisset|isnotset|noalert|r eset], <STATE_NAME>][, <GROUP_NAME>];

Examples

alert tcp any 143 -> any any (msg:"IMAP login";
content:"OK LOGIN"; flowbits:set,logged_in;
flowbits:noalert;)

alert tcp any any -> any 143 (msg:"IMAP LIST"; content:"LIST
flowhits:isset,logged_in;)

3.6.11 seq

The seq keyword is used to check for a specific TCP sequencberum

Format

seg:<number>;

Example

This example looks for a TCP sequence number of 0.
seq:0;

3.6.12 ack

The ack keyword is used to check for a specific TCP acknowledgeber.

Format

ack:<number>;

Example
This example looks for a TCP acknowledge number of 0.
ack:0;

3.6.13 window

The window keyword is used to check for a specific TCP wind@e.si

Format

window:[!]<number>;

Example

This example looks for a TCP window size of 55808.

window:55808;

171

3.6.14 itype

The itype keyword is used to check for a specific ICMP type &alu

Format

itype:min<>max;
itype:[<[>]<number>;

Example
This example looks for an ICMP type greater than 30.
itype:>30;

3.6.15 icode

The icode keyword is used to check for a specific ICMP codeevalu

Format

icode:min<>max;
icode:[<|>]<number>;

Example
This example looks for an ICMP code greater than 30.

icode:>30;

3.6.16 icmpid

The icmpid keyword is used to check for a specific ICMP ID value.

This is useful because some covert channel programs uge ISMP fields when they communicate. This particular plugias developed to
detect the stacheldraht DDoS agent.

Format

icmp_id:<number>;

Example

This example looks for an ICMP ID of 0.
icmp_id:0;

3.6.17 icmpseq

The icmpseq keyword is used to check for a specific ICMP sequence.value

This is useful because some covert channel programs uge ISMP fields when they communicate. This particular plugias developed to
detect the stacheldraht DDoS agent.

Format

icmp_seq:<number>;

172

Example

This example looks for an ICMP Sequence of 0.
icmp_seq:0;

3.6.18 rpc

The rpc keyword is used to check for a RPC application, vergad procedure numbers in SUNRPC CALL requests.

Wildcards are valid for both version and procedure numbgngsing *';

Format

rpc:<application number>, [<version number>|*], [<proce dure number>|*]>;

Example
The following example looks for an RPC portmap GETPORT retue
alert tcp any any -> any 111 (rpc:100000, *, 3;);

Warning

Because of the fast pattern matching engine, the RPC keywwatdwer than looking for the RPC values by using normal eshinatching.

3.6.19 ipproto

The ipproto keyword allows checks against the IP protocol hedetara list of protocols that may be specified by name, seefetacols.

Format

ip_proto:[!|[>|<] <name or number>;

Example

This example looks for IGMP traffic.

alert ip any any -> any any (ip_proto:igmp;)

3.6.20 sameip

The sameip keyword allows rules to check if the source ipasstime as the destination IP.

Format

sameip;

Example

This example looks for any traffic where the Source IP and thstiDation IP is the same.

alert ip any any -> any any (sameip;)

173

3.6.21 streamreassemble

The streanreassemble keyword allows a rule to enable or disable T@amtreassembly on matching traffic.

ANOTE

| The streanreassemble option is only available when the Stream5 prepsor is enabled.

Format
stream_reassemble:<enable|disable>, <server|client|b oth>[, noalert][, fastpath];

e The optionalnoalert parameter causes the rule to not generate an alert whenchesat
e The optionaffastpath parameter causes Snort to ignore the rest of the connection.

Example
For example, to disable TCP reassembly for client trafficnuve see a HTTP 200 Ok Response message, use:

alert tcp any 80 -> any any (flow:to_client, established; co ntent:"200 OK™";
stream_reassemble:disable,client,noalert;)

3.6.22 streamsize

The streansize keyword allows a rule to match traffic according to thenhar of bytes observed, as determined by the TCP sequendsensim

ANOTE

| The streamsize option is only available when the Stream5 preprocdssarabled.

Format

stream_size:<server|client|both|either>, <operator>, <number>;

Where the operator is one of the following:

e < -lessthan
e > - greater than

e =-equal

e !=-notequal

e <=-lessthan or equal

e >=-greater than or equal
Example

For example, to look for a session that is less that 6 bytes the client side, use:

alert tcp any any -> any any (stream_size:client,<,6;)

3.6.23 Non-Payload Detection Quick Reference

Table 3.11: Non-payload detection rule option keywords

Keyword Description

fragoffset The fragoffset keyword allows one to compare the IP fragnoéfset field against a decimal value.
ttl The ttl keyword is used to check the IP time-to-live value.

tos The tos keyword is used to check the IP TOS field for a specifieeva

174

id The id keyword is used to check the IP ID field for a specific galu

ipopts The ipopts keyword is used to check if a specific IP option éspnt.

fragbits The fragbits keyword is used to check if fragmentation arsg@meed bits are set in the IP header.

dsize The dsize keyword is used to test the packet payload size.

flags The flags keyword is used to check if specific TCP flag bits aeseqont.

flow The flow keyword allows rules to only apply to certain direos of the traffic flow.

flowhits The flowbits keyword allows rules to track states during agpmrt protocol session.

seq The seq keyword is used to check for a specific TCP sequencberum

ack The ack keyword is used to check for a specific TCP acknowledgeber.

window The window keyword is used to check for a specific TCP wind@e.si

itype The itype keyword is used to check for a specific ICMP type &alu

icode The icode keyword is used to check for a specific ICMP codeevalu

icmp _id The icmpid keyword is used to check for a specific ICMP ID value.

icmp _seq The icmpseq keyword is used to check for a specific ICMP sequence.value

rpc The rpc keyword is used to check for a RPC application, varsiad procedure numbers in SUNRRC
CALL requests.

ip _proto The ipproto keyword allows checks against the IP protocol header.

sameip The sameip keyword allows rules to check if the source ipasstime as the destination IP.

3.7 Post-Detection Rule Options

3.7.1 logto

The logto keyword tells Snort to log all packets that trigthes rule to a special output log file. This is especially hafa combining data from
things like NMAP activity, HTTP CGI scans, etc. It should beted that this option does not work when Snort is in binarglog mode.

Format

logto:"filename";

3.7.2 session

The session keyword is built to extract user data from TCRiBrs. There are many cases where seeing what users arg itypénet, rlogin, ftp,
or even web sessions is very useful.

There are three available argument keywords for the sesgi@ption:printable , binary , orall .

Theprintable keyword only prints out data that the user would normally @elee able to type. Thieinary keyword prints out data in a binary
format. Theall keyword substitutes non-printable characters with thekadecimal equivalents.

Format

session:[printable|binary|all];
Example
The following example logs all printable strings in a telpatket.
log tcp any any <> any 23 (session:printable;)
Given an FTP data session on port 12345, this example logsaiflead bytes in binary form.

log tcp any any <> any 12345 (metadata:service ftp-data; ses sion:binary;)

175

Warnings

Using the session keyword can slow Snort down considerablit, should not be used in heavy load situations. The seksipmord is best suited
for post-processing binary (pcap) log files.

Thebinary keyword does not log any protocol headers below the apitdayer, and Stream reassembly will cause duplicate daenwthe
reassembled packets are logged.

3.7.3 resp

The resp keyword enables an active response that kills feadifig session. Resp can be used in both passive or inlinesncSe€Z.11.3 for
details.

3.7.4 react

The react keyword enables an active response that incletetng a web page or other content to the client and themgjdbe connection. React
can be used in both passive and inline modes[SeeP.11.4tédisde

3.7.5 tag

The tag keyword allow rules to log more than just the singlekpathat triggered the rule. Once a rule is triggered, &t traffic involving the
source and/or destination hosttégged Tagged traffic is logged to allow analysis of response ceaespost-attack trafficcaggedalerts will be
sent to the same output plugins as the original alert, bsitfte responsibility of the output plugin to properly haritilese special alerts. Currently,
the database output plugin, described in Sedfionk.6.6 doeproperly handleaggedalerts.

Format

tag:<type>, <count>, <metric>[, direction];

type

e session - Log packets in the session that set off the rule

e host - Log packets from the host that caused the tag to activaes (dsrection] modifier)
count

e <integer> - Countis specified as a number of units. Units are specifigioeir:metric> field.
metric

e packets - Tag the host/session fercount> packets
e seconds - Tag the host/session fercount> seconds
e hytes - Tag the host/session fercount> bytes

direction -onlyrelevant if host type is used.

e src - Tag packets containing the source IP address of the pdkegénerated the initial event.
e dst - Tag packets containing the destination IP address of tbleepéhat generated the initial event.

Note that neither subsequent alerts nor event filters well@nt a tagged packet from being logged. Subsequent tatgresiwill cause the limit to
reset.

alert tcp any any <> 10.1.1.1 any (flowbits:isnotset,tagge d;
flowbits:set,tagged; tag:host,600,seconds,src;)

Also note that if you have a tag option in a rule that uses aimether tharpackets , atagged _packet _limit will be used to limit the number
of tagged packets regardless of whetherstmnds or bytes count has been reached. The deféagged _packet _limit value is 256 and can
be modified by using a config option in your snort.conf file (SeetiolZZI13 on how to use tkeyged _packet _limit config option). You can
disable this packet limit for a particular rule by addingaakets metric to your tag option and setting its count to 0 (This cardbne on a global
scale by setting thiagged _packet _limit option in snort.conf to 0). Doing this will ensure that paskare tagged for the full amount séconds

or bytes and will not be cut off by theagged _packet _limit . (Note that theéagged _packet _limit was introduced to avoid DoS situations on
high bandwidth sensors for tag rules with a highonds or bytes counts.)

alert tcp 10.1.1.4 any -> 10.1.1.1 any \
(content:"TAGMYPACKETS"; tag:host,0,packets,600,seco nds,src;)

176

Example

This example logs the first 10 seconds ortgged _packet _limit (whichever comes first) of any telnet session.

alert tcp any any -> any 23 (flags:s,12; tag:session,10,sec onds;)

3.7.6 activates

Theactivates keyword allows the rule writer to specify a rule to add whepecific network event occurs. See Secfion 3.2.6 for morerimdtion.

Format

activates:1;

3.7.7 activatedby

Theactivated _by keyword allows the rule writer to dynamically enable a ruleen a specific activate rule is triggered. See Sefflon]3o2 ibre
information.

Format

activated_by:1;

3.7.8 count

Thecount keyword must be used in combination with theivated _by keyword. It allows the rule writer to specify how many packet leave
the rule enabled for after it is activated. See Sedflonl3d.tore information.

Format

activated_by:1; count:50;

3.7.9 replace

Thereplace keyword is a feature available in inline mode which will cai&nort to replace the prior matching content with the giveng Both
the new string and the content it is to replace must have time $ength. You can have multiple replacements within a e, per content.

replace;"<string>";

3.7.10 detectionfilter

detectionfilter defines a rate which must be exceeded by a source ondtsti host before a rule can generate an event. detefiienhas the
following format:

detection_filter: \
track <by_src|by_dst>, \
count <c>, seconds <s>;

Snort evaluates detection filter as the last step of the detection phase, after evaluatirgjredt rule options (regardless of the position of the
filter within the rule source). At most orletection filter is permitted per rule.

Example - this rule will fire on every failed login attemptinal0.1.2.100 during one sampling period of 60 seconds, tifeefirst 30 failed login
attempts:

drop tcp 10.1.2.100 any > 10.1.1.100 22 (\
msg:"SSH Brute Force Attempt";
flow:established,to_server; \
content:"SSH"; nocase; offset:0; depth:4; \
detection_filter:track by_src, count 30, seconds 60; \
sid:1000001; rev:1;)

177

Option Description

track Rate is tracked either by source IP address or destinatiaddiRess. This means

by _srclby _dst count is maintained for each unique source IP address orwaghe destination
IP address.

count ¢ The maximum number of rule matches in s seconds allowed ddferdetection
filter limit to be exceeded. C must be nonzero.

seconds s Time period over which count is accrued. The value must be&an

Since potentially many events will be generatedetaction ~ filter ~ would normally be used in conjunction with avent filter ~ to reduce the
number of logged events.

3.7.11 Post-Detection Quick Reference

Table 3.12: Post-detection rule option keywords

Keyword Description

logto The logto keyword tells Snort to log all packets that trigthes rule to a special output log file.

session The session keyword is built to extract user data from TCRiSes.

resp The resp keyword is used attempt to close sessions whenraisatiggered.

react This keyword implements an ability for users to react toficathat matches a Snort rule by closing
connection and sending a notice.

tag The tag keyword allow rules to log more than just the singlekpathat triggered the rule.

activates This keyword allows the rule writer to specify a rule to addenta specific network event occurs.

activated _by This keyword allows the rule writer to dynamically enableuterwhen a specific activate rule is
triggered.

count This keyword must be used in combination with #tévated _by keyword. It allows the rule writer|
to specify how many packets to leave the rule enabled for éfteactivated.

replace Replace the prior matching content with the given strincheféame length. Available in inline mode
only.

detection filter Track by source or destination IP address and if the rulenaibe matches more than the configured
rate it will fire.

3.8 Rule Thresholds

AI\I(’)TF

Rule thresholds are deprecated and will not be supportedfirtuae release. Usdetection filter s [3.2ID) within rules, of
event filter s [ZZ2) as standalone configurations instead.

threshold can be included as part of a rule, or you can use standaloeghiblds that reference the generator and SID they are dppli&here is
no functional difference between adding a threshold toe, il using a standalone threshold applied to the same rbkeTs a logical difference.
Some rules may only make sense with a threshold. These sincolghorate the threshold into the rule. For instance, efar detecting a too many
login password attempts may require more than 5 attemptis. cBin be done using the ‘limit’ type of threshold. It makessgethat the threshold
feature is an integral part of this rule.

Format
threshold: \
type <limit|threshold|both>, \

track <by_src|by_dst>, \
count <c>, seconds <s>;

Examples
This rule logs the first event of this SID every 60 seconds.

alert tcp $external_net any -> $hitp_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold:type li 178 mit, track \

Ihw err ~ralint 1 carnrnnde BN cid-10NNQLED: vavs 1)

Option Description
type limit|threshold|both typelimit alerts on the 1st m events during the time interval, thenrgmevents
for the rest of the time interval. Typtreshold alerts every m times we see
this event during the time interval. Tyeth alerts once per time interval afte
seeing m occurrences of the event, then ignores any adaligeents during the
time interval.

track by _srclby _dst rate is tracked either by source IP address, or destindfi@utiress. This means
count is maintained for each unique source IP addresses, eath unique desti
nation IP addresses. Ports or anything else are not tracked.

=

count ¢ number of rule matching in s seconds that will caegent _filter limit to be
exceededc must be nonzero value.
seconds s time period over whicltount is accrueds must be nonzero value.

alert tcp $external_net any -> $http_servers S$http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold:type th reshold, \

track by_dst, count 10 , seconds 60 ; sid:1000852; rev:1;)

This rule logs at most one event every 60 seconds if at leastdfits on this SID are fired.

alert tcp $external_net any -> $http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold:type bo th, track \

by_dst, count 10, seconds 60; sid:1000852; rev:1;)

3.9 Writing Good Rules

There are some general concepts to keep in mind when dewgl§piort rules to maximize efficiency and speed.

3.9.1 Content Matching

Snort groups rules by protocol (ip, tcp, udp, icmp), then byt (ip and icmp use slightly differnet logic), then by thagith content and those
without. For rules withcontent , a multi-pattern matcher is used to select rules that havmace at matching based on a single content. Selecting
rules for evaluation via this "fast” pattern matcher wasrfduo increase performance, especially when applied t@ lastg groups like HTTP.
The longer and more uniquecantent is, the less likely that rule and all of it's rule options wilé evaluated unnecessarily - it's safe to say there
is generally more "good” traffic than "bad”. Rules withcedntent are always evaluated (relative to the protocol and portmiauwvhich they
reside), potentially putting a drag on performance. Whilme detection options, such pse andbyte _test , perform detection in the payload
section of the packet, they are not used by the fast pattetching engine. If at all possible, try and have at least coment (or uricontent)

rule option in your rule.

3.9.2 Catch the Vulnerability, Not the Exploit

Try to write rules that target the vulnerability, insteadacgpecific exploit.
For example, look for a the vulnerable command with an argureat is too large, instead of shellcode that binds a shell.

By writing rules for the vulnerability, the rule is less velable to evasion when an attacker changes the exploitlgligh

3.9.3 Catch the Oddities of the Protocol in the Rule

Many services typically send the commands in upper casadetE TP is a good example. In FTP, to send the usernameje¢hesgnds:
user username_here

A simple rule to look for FTP root login attempts could be:

179

alert tcp any any -> any any 21 (content:"user root";)

While it mayseentrivial to write a rule that looks for the username root, adjoale will handle all of the odd things that the protocol ntighndle
when accepting the user command.

For example, each of the following are accepted by most Firese

user root
user root
user root
user root
user<tab>root

To handle all of the cases that the FTP server might handieule needs more smarts than a simple string match.

A good rule that looks for root login on ftp would be:

alert tcp any any -> any 21 (flow:to_server,established; \
content:"root"; pere:"/user\s+root/i";)

There are a few important things to note in this rule:

e The rule has dlow option, verifying this is traffic going to the server on anaddished session.

e The rule has @ontentoption, looking forroot, which is the longest, most unique string in the attack. Bipigon is added to allow the fast
pattern matcher to select this rule for evaluation only & tlontentoot is found in the payload.

e The rule has @creoption, looking for user, followed at least one space charggvhich includes tab), followed by root, ignoring case.

3.9.4 Optimizing Rules
The content matching portion of the detection engine hasrsean to handle a few evasion cases. Rules that are notmropeétten can cause
Snort to waste time duplicating checks.

The way the recursion works now is if a pattern matches, andyifof the detection options after that pattern fail, thesklfor the pattern again
after where it was found the previous time. Repeat until #itéepn is not found again or the opt functions all succeed.

On first read, that may not sound like a smart idea, but it isleéeFor example, take the following rule:
alert ip any any -> any any (content:"a"; content:"b"; withi n:1;)

This rule would look for “a”, immediately followed by “b”. Whout recursion, the payload “aab” would fail, even thougts iobvious that the
payload “aab” has “a” immediately followed by “b”, becaube first "a” is not immediately followed by “b”.

While recursion is important for detection, the recursimpliementation is not very smart.

For example, the following rule options are not optimized:
content:"|13|"; dsize:1;

By looking at this rule snippit, it is obvious the rule looks fa packet with a single byte of 0x13. However, because afrsgn, a packet with
1024 bytes of 0x13 could cause 1023 too many pattern magmpts and 1023 too many dsize checks. Why? The content Oxdf8l Wwe found
in the first byte, then the dsize option would fail, and beeanfsrecursion, the content 0x13 would be found again stagfter where the previous
0x13 was found, once it is found, then check the dsize agaggating until 0x13 is not found in the payload again.

Reordering the rule options so that discrete checks (sudiizas) are moved to the beginning of the rule speed up Snort.

The optimized rule snipping would be:
dsize:1; content:"|13|";

A packet of 1024 bytes of 0x13 would fail immediately, as teezd check is the first option checked and dsize is a dischetekavithout recursion.

The following rule options are discrete and should gengizl placed at the beginning of any rule:

e dsize
o flags
o flow

180

o fraghits
e icmp _id
e icmp _seq
e icode

e id

e ipopts
e ip _proto
o itype

e seq

e session
e tos

o (il

e ack

e window
e resp

e sameip

3.9.5 Testing Numerical Values

The rule optionsdyte testandbyte jumpwere written to support writing rules for protocols that bdength encoded data. RPC was the protocol
that spawned the requirement for these two rule options P& ises simple length based encoding for passing data.

In order to understandthy byte test and bytgump are useful, let's go through an exploit attempt agaimstsadmind service.

This is the payload of the exploit:

89 09 9c e2 00 00 00 00 00 00 00 02 00 01 87 88
00 00 00 Oa 00 00 00 01 OO 00 0O 01 00 0O OO0 20
40 28 3a 10 00 00 00 Oa 4d 45 54 41 53 50 4c 4f
49 54 00 00 00 00 00 00 00 00 00 00 0O 00 00 00
00 00 00 00 00 00 OO 00 40 28 3a 14 00 07 45 df ..
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 OO 00 06 OO 0O OO OO 00 0O OO 00
00 00 00 00 00 00 00 04 00 00 00 00 00 00 00 04
7f 00 00 01 00 01 87 88 00 00 00 Oa 00 00 00 04
7f 00 00 01 00 01 87 88 00 00 00 Oa 00 00 00 11 ..
00 00 00 1e 00 OO 00 OO OO 00 OO OO 00 0O OO0 00

00 00 00 00 00 00 00 3b 4d 45 54 41 53 50 4c 4f
49 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 0O 00 OO 0O 00 OO 00 00 00 00ccocenunee
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 06 73 79 73 74 65 6d 00 00 ...
00 00 00 15 2e 2e 2f 2e 2e 2f 2e 2e 2f 2e 2e 2f ..l.1.l.I
2e 2e 2f 62 69 6e 2f 73 68 00 00 00 00 00 04 le ../bin/sh.......
<snip>

Let's break this up, describe each of the fields, and figurdnowtto write a rule to catch this exploit.

There are a few things to note with RPC:

o Numbers are written as uint32s, taking four bytes. The nurBbevould show up as 0x0000001a.

Strings are written as a uint32 specifying the length of thieg, the string, and then null bytes to pad the length ofsthiag to end on a 4
byte boundary. The string “bob” would show up as 0x00000Q68&200.

89 09 9c e2 - the request id, a random uint32, unique to each req uest
00 00 00 00 - pc type (call = 0, response = 1)

00 00 00 02 - rpc version (2)

00 01 87 88 - rpc program (0x00018788 = 100232 = sadmind)

00 00 00 Oa - rpc program version (0x0000000a = 10)

00 00 00 01 - pc procedure (0x00000001 = 1)

00 00 00 01 - credential flavor (1 = auth_unix)

00 00 00 20 - length of auth_unix data (0x20 = 32

the next 32 bytes are the auth_unix data

181

40 28 3a 10 - unix timestamp (0x40283a10 = 1076378128 = feb 10 0 1:55:28 2004 gmt)
00 00 00 Oa - length of the client machine name (0x0a = 10)

4d 45 54 41 53 50 4c¢ 4f 49 54 00 00 - metasploit

00 00 00 00 - uid of requesting user (0)

00 00 00 00 - gid of requesting user (0)

00 00 00 00 - extra group ids (0)

00 00 00 00 - verifier flavor (0 = auth_null, aka none)
00 00 00 00 - length of verifier (0, aka none)

The rest of the packet is the request that gets passed todpirece of sadmind.

However, we know the vulnerability is that sadmind truses tid coming from the client. sadmind runs any request wherelient’s uid is 0 as
root. As such, we have decoded enough of the request to writrite.

First, we need to make sure that our packet is an RPC call.

content:"|00 00 00 00|"; offset:4; depth:4;

Then, we need to make sure that our packet is a call to sadmind.

content:"|00 01 87 88|"; offset:12; depth:4;

Then, we need to make sure that our packet is a call to the gwogd,, the vulnerable procedure.

content:"|00 00 00 01]"; offset:16; depth:4;

Then, we need to make sure that our packet has anithcredentials.

content:"|00 00 00 01]"; offset:20; depth:4;

We don't care about the hostname, but we want to skip overdtcireck a number value after the hostname. This is wheretbgtds useful.
Starting at the length of the hostname, the data we have is:

00 00 00 Oa 4d 45 54 41 53 50 4c 4f 49 54 00 00
00 00 00 00 00 00 00 OO OO 0O 00 00 00 00 00 00
00 00 00 00

We want to read 4 bytes, turn it into a number, and jump thatyntgtes forward, making sure to account for the padding tH€Requires on
strings. If we do that, we are now at:

00 00 00 00 00 00 00 0O OO 0O 00 00 00 00 00 00
00 00 00 00

which happens to be the exact location of the uid, the valuevarg to check.

In english, we want to read 4 bytes, 36 bytes from the beginoirthe packet, and turn those 4 bytes into an integer and phatpmany bytes
forward, aligning on the 4 byte boundary. To do that in a Sndg, we use:

byte_jump:4,36,align;

then we want to look for the uid of 0.

content:"|00 00 00 00|"; within:4;

Now that we have all the detection capabilities for our ridés put them all together.

content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01|"; offset:16; depth:4;
content:"|00 00 00 01]"; offset:20; depth:4;
byte_jump:4,36,align;

content:"|00 00 00 00|"; within:4;

182

The 3rd and fourth string match are right next to each otlwewesshould combine those patterns. We end up with:

content:"|00 00 00 00|"; offset:4; depth:4;

content:"|00 01 87 88|"; offset:12; depth:4;

content:"|00 00 00 01 00 00 00 01|"; offset:16; depth:8;
byte_jump:4,36,align;

content:"|00 00 00 00|"; within:4;

If the sadmind service was vulnerable to a buffer overflow nvieading the client's hostname, instead of reading thetteofjthe hostname and
jumping that many bytes forward, we would check the lengtthefhostname to make sure it is not too large.

To do that, we would read 4 bytes, starting 36 bytes into tleqtaturn it into a number, and then make sure it is not togelgtet's say bigger
than 200 bytes). In Snort, we do:
byte_test:4,>,200,36;

Our full rule would be:

content:"|00 00 00 00|"; offset:4; depth:4;

content:"|00 01 87 88|"; offset:12; depth:4;

content:"|00 00 00 01 00 00 00 01|"; offset:16; depth:8;
byte_test:4,>,200,36;

183

Chapter 4

Dynamic Modules

Preprocessors, detection capabilities, and rules can eodeteloped as dynamically loadable module to snort. Whabled via the-enable-
dynamicpluginconfigure option, the dynamic API presents a means for Igediymamic libraries and allowing the module to utilize cerfanctions
within the main snort code.

The remainder of this chapter will highlight the data staues and API functions used in developing preprocessotsctiten engines, and rules as
a dynamic plugin to snort.

Beware: the definitions herein may be out of date; check tpeogpiate header files for the current definitions.

4.1 Data Structures

A number of data structures are central to the API. The difiniif each is defined in the following sections.

4.1.1 DynamicPluginMeta

TheDynamicPluginMetastructure defines the type of dynamic module (preprocerdes, or detection engine), the version information, aaith p
to the shared library. A shared library can implement akéhtypes, but typically is limited to a single functional@tych as a preprocessor. It is
defined insf _dynamic _meta.h as:

#define MAX_NAME_LEN 1024

#define TYPE_ENGINE 0x01
#define TYPE_DETECTION 0x02
#define TYPE_PREPROCESSOR 0x04

typedef struct _DynamicPluginMeta
{ .
int type;
int major;
int minor;
int build;
char uniqgueName[MAX_NAME_LEN];
char *libraryPath;
} DynamicPluginMeta;

4.1.2 DynamicPreprocessorData

The DynamicPreprocessorDatstructure defines the interface the preprocessor usestadntwith snort itself. This includes functions to registe
the preprocessor’s configuration parsing, restart, eritl grocessing functions. It includes function to log messagrrors, fatal errors, and
debugging info. It also includes information for settingréd, handling Inline drops, access to the StreamAPI, apdoitides access to the
normalized http and alternate data buffers. This datatstreshould be initialized when the preprocessor sharedriitis loaded. It is defined in

sf _dynamic _preprocessor.h . Check the header file for the current definition.

184

4.1.3 DynamicEngineData

The DynamicEngineDatastructure defines the interface a detection engine usedet@d with snort itself. This includes functions for loggi
messages, errors, fatal errors, and debugging info as svalh@eans to register and check flowbits. It also includesaitocto store rule-stubs for
dynamic rules that are loaded, and it provides access toatmeatized http and alternate data buffers. It is definest imlynamic _engine.h as:

typedef struct _DynamicEngineData
{
int version;
u_int8_t *altBuffer;
Urilnfo *uriBuffersf]MAX_URIINFOS];
RegisterRule ruleRegister;
RegisterBit flowbitRegister;
CheckFlowbit flowbitCheck;
DetectAsnl asnlDetect;
LogMsgFunc logMsg;
LogMsgFunc errMsg;
LogMsgFunc fatalMsg;
char *dataDumpDirectory;

GetPreprocRuleOptFuncs getPreprocOptFuncs;

SetRuleData setRuleData;
GetRuleData getRuleData;

DebugMsgFunc debugMsg;
#ifdef HAVE_WCHAR_H
DebugWideMsgFunc debugWideMsg;
#endif

char **debugMsgFile;
int *debugMsgLine;

PCRECompileFunc pcreCompile;
PCREStudyFunc pcreStudy;
PCREExecFunc pcreExec;

} DynamicEngineData;

4.1.4 SFSnortPacket

The SFSnortPackettructure mirrors the snort Packet structure and providesss to all of the data contained in a given packet.

It and the data structures it incorporates are definesfl isnort _packet.h

fields. Check the header file for the current definitions.

4.1.5 Dynamic Rules

. Additional data structures may be defined to referencer gitzgocol

A dynamic rule should use any of the following data structufghe following structures are definedsin_snort _plugin _api.h .

Rule

TheRulestructure defines the basic outline of a rule and containsahee set of information that is seen in a text rule. That afes$uprotocol, ad-
dress and port information and rule information (clasdiiica generator and signature IDs, revision, prioritysslfication, and a list of references).
It also includes a list of rule options and an optional evéduafunction.

#define RULE_MATCH 1
#define RULE_NOMATCH 0

typedef struct _Rule

{
IPInfo ip;

Rulelnformation info;

RuleOption **options; /* NULL terminated array of RuleOpti

ruleEvalFunc evalFunc;

185

on union */

char initialized; /* Rule Initialized, used internally */

u_int32_t numOptions; /* Rule option count, used internall y ¥
char noAlert; * Flag with no alert, used internally */
void *ruleData; [* Hash table for dynamic data pointers */

} Rule;

The rule evaluation function is defined as

typedef int (*ruleEvalFunc)(void *);

where the parameter is a pointer to the SFSnortPacket wteuct

Rulelnformation

The RuleInformationstructure defines the meta data for a rule and includes denéiy signature 1D, revision, classification, priority,essage
text, and a list of references.

typedef struct _Rulelnformation
{
u_int32_t genID;
u_int32_t sigID;
u_int32_t revision;
char *classification; /* String format of classification n ame */
u_int32_t priority;
char *message;
RuleReference **references; /* NULL terminated array of re ferences */
RuleMetaData **meta; /* NULL terminated array of reference s ¥
} Rulelnformation;

RuleReference
TheRuleReferencstructure defines a single rule reference, including theesysame and rereference identifier.

typedef struct _RuleReference

char *systemName;
char *refldentifier;
} RuleReference;

IPInfo

ThelPInfo structure defines the initial matching criteria for a rulel amcludes the protocol, src address and port, destinatdreas and port, and
direction. Some of the standard strings and variables @aaefined - any, HOMBENET, HTTP.SERVERS, HTTBPORTS, etc.

typedef struct _IPInfo

{
u_int8_t protocol;
char * src_addr;
char * src_port; /* 0 for non TCP/UDP */
char direction; [* non-zero is bi-directional */
char * dst_addr;
char * dst_port; /* 0 for non TCP/UDP */
} IPInfo;
#define ANY_NET "any"
#define HOME_NET "$HOME_NET"
#define EXTERNAL_NET "$SEXTERNAL_NET"
#define ANY_PORT "any"
#define HTTP_SERVERS "$HTTP_SERVERS"
#define HTTP_PORTS "$HTTP_PORTS"

#define SMTP_SERVERS "$SMTP_SERVERS"

186

RuleOption

The RuleOptionstructure defines a single rule option as an option type aefesence to the data specific to that option. Each option liags
field that contains specific flags for that option as well as at"lag. The "Not” flag is used to negate the results of evafigathat option.

typedef enum DynamicOptionType {
OPTION_TYPE_PREPROCESSOR,
OPTION_TYPE_CONTENT,
OPTION_TYPE_PCRE,
OPTION_TYPE_FLOWBIT,
OPTION_TYPE_FLOWFLAGS,
OPTION_TYPE_ASNLI,
OPTION_TYPE_CURSOR,
OPTION_TYPE_HDR_CHECK,
OPTION_TYPE_BYTE_TEST,
OPTION_TYPE_BYTE_JUMP,
OPTION_TYPE_BYTE_EXTRACT,
OPTION_TYPE_SET_CURSOR,
OPTION_TYPE_LOOP,
OPTION_TYPE_MAX

2

typedef struct _RuleOption
{
int optionType;
union
{
void *ptr;
ContentInfo *content;
Cursorinfo *cursor;
PCREInfo *pcre;
FlowBitsInfo *flowBit;
ByteData *hyte;
ByteExtract *byteExtract;
FlowFlags *flowFlags;
AsnlContext *asnl;
HdrOptCheck *hdrData;
LooplInfo *loop;
PreprocessorOption *preprocOpt;
} option_u;
} RuleOption;

#define NOT_FLAG 0x10000000

Some options also contain information that is initializeédum time, such as the compiled PCRE information, Boyer-Mamntent information,
the integer ID for a flowbit, etc.

The option types and related structures are listed below.

e OptionType: Content & StructuréContentinfo

The Contentinfostructure defines an option for a content search. It includegattern, depth and offset, and flags (one of which must
specify the buffer — raw, URI or normalized — to search). Aiddal flags include nocase, relative, unicode, and a dasignthat this
content is to be used for snorts fast pattern evaluation.nit&t unique content, that which distinguishes this rule pssaible match to a
packet, should be marked for fast pattern evaluation. Irdifmamic detection engine provided with Snort, if @ontentinfostructure in a
given rules uses that flag, the one with the longest contegthewill be used.

typedef struct _Contentinfo

{
u_int8_t *pattern;
u_int32_t depth;
int32_t offset;
u_int32_t flags; /* must include a CONTENT_BUF_X */
void *boyer_ptr;
u_int8_t *patternByteForm;
u_int32_t patternByteFormLength;
u_int32_t incrementLength;

} Contentlnfo;

#define CONTENT_NOCASE 0x01

#define CONTENT_RELATIVE 0x02
#define CONTENT_UNICODE2BYTE 0x04

187

#define CONTENT_UNICODE4BYTE 0x08
#define CONTENT_FAST_PATTERN 0x10

#define CONTENT_END_BUFFER 0x20
#define CONTENT_BUF_NORMALIZED ~ 0x100
#define CONTENT_BUF_RAW 0x200
#define CONTENT_BUF_URI 0x400

OptionType: PCRE & Structure? CREInfo

The PCREInfostructure defines an option for a PCRE search. It include®@RE expression, pcitags such as caseless, as defined in
PCRE.h, and flags to specify the buffer.

/*
pcre.h provides flags:

PCRE_CASELESS
PCRE_MULTILINE
PCRE_DOTALL
PCRE_EXTENDED
PCRE_ANCHORED
PCRE_DOLLAR_ENDONLY
PCRE_UNGREEDY

*/

typedef struct _PCREInfo

{

char *expr;

void *compiled_expr;

void *compiled_extra;

u_int32_t compile_flags;

u_int32_t flags; /* must include a CONTENT_BUF_X */
} PCREInfo;

OptionType: Flowbit & StructureFlowBitsInfo
TheFlowBitsInfostructure defines a flowbits option. It includes the name efliwbit and the operation (set, unset, toggle, isset, satpt

#define FLOWBIT_SET 0x01
#define FLOWBIT_UNSET 0x02
#define FLOWBIT_TOGGLE 0x04
#define FLOWBIT_ISSET 0x08
#define FLOWBIT_ISNOTSET 0x10
#define FLOWBIT_RESET 0x20
#define FLOWBIT_NOALERT 0x40

typedef struct _FlowBitsInfo

{
char *flowBitsName;
u_int8_t operation;
u_int32_t id;

u_int32_t flags;
} FlowBitsInfo;

OptionType: Flow Flags & Structuré:lowFlags

TheFlowFlagsstructure defines a flow option. It includes the flags, whidtgp the direction (frorosserver, taserver), established session,
etc.

#define FLOW_ESTABLISHED 0x10

#define FLOW_IGNORE_REASSEMBLED 0x1000

#define FLOW_ONLY_REASSMBLED 0x2000

#define FLOW_FR_SERVER 0x40

#define FLOW_TO_CLIENT 0x40 /* Just for redundancy */
#define FLOW_TO_SERVER 0x80

#define FLOW_FR_CLIENT 0x80 /* Just for redundancy */

typedef struct _FlowFlags

u_int32_t flags;
} FlowFlags;

OptionType: ASN.1 & StructureAsn1Context
TheAsnl1Contexstructure defines the information for an ASN1 option. It misrthe ASN1 rule option and also includes a flags field.

#define ASN1_ABS_OFFSET 1

188

#define ASN1_REL_OFFSET 2

typedef struct _Asn1Context
{
int bs_overflow;
int double_overflow;
int print;
int length;
unsigned int max_length;
int offset;
int offset_type;
u_int32_t flags;
} AsnlContext;

OptionType: Cursor Check & Structur€ursorinfo

The Cursorinfostructure defines an option for a cursor evaluation. Theocusshe current position within the evaluation buffer, elated
to content and PCRE searches, as well as byte tests and byte.jlt includes an offset and flags that specify the bufflis €an be used
to verify there is sufficient data to continue evaluatiomikir to the isdataat rule option.

typedef struct _Cursorinfo

int32_t offset;
u_int32_t flags; I* specify one of CONTENT_BUF_X */
} Cursorlinfo;

OptionType: Protocol Header & StructurnddrOptCheck

The HdrOptCheckstructure defines an option to check a protocol header foeeifapvalue. It includes the header field, the operation
(i,¢,,=,etc), a value, a mask to ignore that part of the he#ldr and flags.

#define IP_HDR_ID 0x0001 /* IP Header ID */

#define IP_HDR_PROTO 0x0002 /* IP Protocol */

#define IP_HDR_FRAGBITS 0x0003 /* Frag Flags set in IP Heade r¥

#define IP_HDR_FRAGOFFSET 0x0004 /* Frag Offset set in IP He ader */
#define IP_HDR_OPTIONS 0x0005 /* IP Options -- is option xx i ncluded */
#define IP_HDR_TTL 0x0006 /* IP Time to live */

#define IP_HDR_TOS 0x0007 /* IP Type of Service */

#define IP_HDR_OPTCHECK_MASK 0x000f

#define TCP_HDR_ACK 0x0010 /* TCP Ack Value */

#define TCP_HDR_SEQ 0x0020 /* TCP Seq Value */

#define TCP_HDR_FLAGS 0x0030 /* Flags set in TCP Header *

#define TCP_HDR_OPTIONS 0x0040 /* TCP Options -- is option x X included */
#define TCP_HDR_WIN 0x0050 /* TCP Window */

#define TCP_HDR_OPTCHECK_MASK 0x000

#define ICMP_HDR_CODE 0x1000 /* ICMP Header Code */
#define ICMP_HDR_TYPE 0x2000 /* ICMP Header Type */
#define ICMP_HDR_ID 0x3000 /* ICMP ID for ICMP_ECHO/ICMP_E CHO_REPLY *
#define ICMP_HDR_SEQ 0x4000 /* ICMP ID for ICMP_ECHO/ICMP_ ECHO_REPLY *

#define ICMP_HDR_OPTCHECK_MASK 0xf000

typedef struct _HdrOptCheck

{
u_intl6_t hdrField; /* Field to check */
u_int32_t op; [* Type of comparison */
u_int32_t value; [* Value to compare value against */

u_int32_t mask_value; /* bits of value to ignore */
u_int32_t flags;
} HdrOptCheck;

OptionType: Byte Test & StructurdyteData

TheByteDatastructure defines the information for both ByteTest and Bytep operations. It includes the number of bytes, an operati
(for ByteTest, j,¢,,=,etc), a value, an offset, multiplard flags. The flags must specify the buffer.

#define CHECK_EQ
#define CHECK_NEQ
#define CHECK_LT
#define CHECK_GT
#define CHECK_LTE
#define CHECK_GTE
#define CHECK_AND
#define CHECK_XOR
#define CHECK_ALL

C® ot wdLo

189

#define CHECK_ATLEASTONE 9
#define CHECK_NONE 10

typedef struct _ByteData

{
u_int32_t bhytes; /* Number of bytes to extract */
u_int32_t op; [* Type of byte comparison, for checkValue */
u_int32_t value; [* Value to compare value against, for chec kValue, or extracted value */
int32_t offset; [* Offset from cursor */
u_int32_t multiplier; /* Used for byte jump -- 32bits is MORE than enough */
u_int32_t flags; /* must include a CONTENT_BUF_X */
} ByteData;
e OptionType: Byte Jump & Structur@yteData
SeeByte Tesabove.
e OptionType: Set Cursor & Structur€ursorinfo
SeeCursor Checlabove.

e OptionType: Loop & Structured:ooplnfo,ByteExtract,DynamicElement
TheLooplnfostructure defines the information for a set of options thatabe evaluated repeatedly. The loop option acts like a FOR |
and includes start, end, and increment values as well aothparison operation for termination. It includes a curstjust that happens
through each iteration of the loop, a reference to a Ruledtriacture that defines the RuleOptions are to be evaluatedgh each iteration.
One of those options may be a ByteExtract.

typedef struct _LooplInfo

{
DynamicElement *start; [* Starting value of FOR loop (i=sta rt) */
DynamicElement *end; [* Ending value of FOR loop (i OP end) */
DynamicElement *increment; /* Increment value of FOR loop (i+= increment) */
u_int32_t op; [* Type of comparison for loop termination */
Cursorlnfo *cursorAdjust; /* How to move cursor each iterat ion of loop *
struct _Rule *subRule; [* Pointer to SubRule & options to eva luate within
* the loop */
u_int8_t initialized; [* Loop initialized properly (safeg uard) */
u_int32_t flags; [* can be used to negate loop results, speci fies * relative. */
} Looplnfo;

The ByteExtractstructure defines the information to use when extractingsidr a DynamicElement used a in Loop evaltion. It includes
the number of bytes, an offset, multiplier, flags specifyting buffer, and a reference to the DynamicElement.

typedef struct _ByteExtract

u_int32_t bytes; /* Number of bytes to extract */

int32_t offset; [* Offset from cursor */

u_int32_t multiplier; /* Multiply value by this (similar to byte jump) */
u_int32_t flags; /* must include a CONTENT_BUF_X */

char *refld; [* To match up with a DynamicElement refld */

void *memoryLocation; /* Location to store the data extract ed ¥/

} ByteExtract;

TheDynamicElemenstructure is used to define the values for a looping evalnatiancludes whether the element is static (an integer) or
dynamic (extracted from a buffer in the packet) and the vaiag a dynamic element, the value is filled by a related Bytetex option that
is part of the loop.

#define DYNAMIC_TYPE_INT_STATIC 1
#define DYNAMIC_TYPE_INT_REF 2

typedef struct _DynamicElement

{
char dynamicType; [* type of this field - static or reference *
char *refld; I* reference ID (NULL if static) */
union
void *voidPtr; * Holder */
int32_t staticint; [* Value of static */
int32_t *dynamiclnt; /* Pointer to value of dynamic */
} data;

} DynamicElement;

4.2 Required Functions

Each dynamic module must define a set of functions and daggtshtio work within this framework.

190

4.2.1 Preprocessors

Each dynamic preprocessor library must define the folloingtions. These are defined in the ffe_dynamic _preproc _lib.c . The metadata
and setup function for the preprocessor should be defihgateproc _info.h

e int LibVersion(DynamicPluginMeta *)
This function returns the metadata for the shared library.
e int InitializePreprocessor(DynamicPreprocessorData *)
This function initializes the data structure for use by theppocessor into a library global variablepd and invokes the setup function.

4.2.2 Detection Engine
Each dynamic detection engine library must define the faligWunctions.

e int LibVersion(DynamicPluginMeta *)
This function returns the metadata for the shared library.
e int InitializeEngineLib(DynamicEngineData *)
This function initializes the data structure for use by thgire.

The sample code provided with Snort predefines those furectind defines the following APIs to be used by a dynamic riblesry.

e int RegisterRules(Rule **)
This is the function to iterate through each rule in the Iigtjalize it to setup content searches, PCRE evalution,daid register flowbits.
e int DumpRules(char *,Rule **)
This is the function to iterate through each rule in the Iied avrite a rule-stop to be used by snort to control the actfdherule (alert, log,
drop, etc).
e int ruleMatch(void *p, Rule *rule)

This is the function to evaluate a rule if the rule does nothts/own Rule Evaluation Function. This uses the individuattions outlined
below for each of the rule options and handles repetitivdertirissues.

Each of the functions below returns RULMEATCH if the option matches based on the current criteriageuposition, etc).

— int contentMatch(void *p, ContentInfo* content,ink8_t **cursor)

This function evaluates a single content for a given padkeicking for the existence of that content as delimited byt@utinfo and
cursor. Cursor position is updated and returned in *cursor.

With a text rule, the with option corresponds to depth, arddistance option corresponds to offset.

— int checkFlow(void *p, FlowFlags *flowflags)
This function evaluates the flow for a given packet.

— int extractValue(void *p, ByteExtract *byteExtract,int8_t *cursor)
This function extracts the bytes from a given packet, asipédy ByteExtract and delimited by cursor. Value extrdate stored
in ByteExtract memoryLocation parameter.

— int processFlowbits(void *p, FlowBitsInfo *flowbits)
This function evaluates the flowbits for a given packet, &igd by FlowBitsInfo. It will interact with flowbits usedyttext-based
rules.

— int setCursor(void *p, Cursorinfo *cursorlnfo,-int8_t **cursor)

This function adjusts the cursor as delimited by CursorliNew cursor position is returned in *cursor. It handles ksiohecking
for the specified buffer and returns RUINEOMAT CH if the cursor is moved out of bounds.

Itis also used by contentMatch, byteJump, and pcreMatchjtestthe cursor position after a successful match.
— int checkCursor(void *p, Cursorlnfo *cursorInfo,.mt8_t *cursor)
This function validates that the cursor is within boundshef $pecified buffer.
— int checkValue(void *p, ByteData *byteData,int32_t value, uint8_t *cursor)
This function compares thealueto the value stored in ByteData.
— int byteTest(void *p, ByteData *byteData,int8_t *cursor)
This is a wrapper for extractValue() followed by checkVd)ue
— int byteJump(void *p, ByteData *byteData,int8_t **cursor)
This is a wrapper for extractValue() followed by setCurkor(
— int pcreMatch(void *p, PCREInfo *pcre,_int8_t **cursor)

This function evaluates a single pcre for a given packetckihg for the existence of the expression as delimited by PIgf® and
cursor. Cursor position is updated and returned in *cursor.

— int detectAsn1(void *p, Asn1Context *asnlint8_t *cursor)
This function evaluates an ASN.1 check for a given packetletimited by Asn1Context and cursor.

191

— int checkHdrOpt(void *p, HdrOptCheck *optData)
This function evaluates the given packet’s protocol heades specified by HdrOptCheck.

— int loopEval(void *p, Looplnfo *loop, Lint8_t **cursor)
This function iterates through the SubRule of Looplnfo, elindited by Looplnfo and cursor. Cursor position is updaded returned
in *cursor.

— int preprocOptionEval(void *p, PreprocessorOption *prepOpt, wint8_t **cursor)
This function evaluates the preprocessor defined optiospegscifed by PreprocessorOption. Cursor position is @odatd returned
in *cursor.

— void setTempCursor(int8_t **temp_cursor, wint8_t **cursor)
This function is used to handled repetitive contents to sdiva cursor position temporarily to be reset at later point.

— void revertTempCursor(int8_t **temp_cursor, wint8_t **cursor)
This function is used to revert to a previously saved temyararsor position.

I NOT—
Ifé‘ou%l@l}dé tdwrite you own rule evaluation function, patis that occur more than once may result in false negaffied® extra care
to handle this situation and search for the matched pattgaim af subsequent rule options fail to match. This shoulditwee for both
content and PCRE options.

4.2.3 Rules

Each dynamic rules library must define the following funeioExamples are defined in the 8feort _dynamic _detection lib.c . The metadata
and setup function for the preprocessor should be definsidriort _dynamic _detection _lib.h

e int LibVersion(DynamicPluginMeta *)
This function returns the metadata for the shared library.

e int EngineVersion(DynamicPluginMeta *)
This function defines the version requirements for the spoading detection engine library.

e int DumpSkeletonRules()
This functions writes out the rule-stubs for rules that aslked.

e int InitializeDetection()
This function registers each rule in the rules library. sl set up fast pattern-matcher content, register flowbits

The sample code provided with Snort predefines those furetod uses the following data within the dynamic rules fipra

o Rule *rules[]
A NULL terminated list of Rule structures that this librargfthes.

4.3 Examples

This section provides a simple example of a dynamic pregsmreand a dynamic rule.

4.3.1 Preprocessor Example

The following is an example of a simple preprocessor. Thegppmcessor always alerts on a Packet if the TCP port mathkeese configured.
This assumes the the filskdynamicpreproclib.c andsf.dynamicpreproclib.h are used.

This is the metadata for this preprocessor, definest preprocinfo.h

#define MAJOR_VERSION 1
#define MINOR_VERSION 0
#define BUILD_VERSION 0
#define PREPROC_NAME "SF_Dynamic_Example_Preprocessor "

#define DYNAMIC_PREPROC_SETUP ExampleSetup
extern void ExampleSetup();

The remainder of the code is definedjppexample.@nd is compiled together wigf. dynamicpreproclib.c into lib_sfdynamicpreprocessaexample.so.

Define the Setup function to register the initialization dtion.

192

#define GENERATOR_EXAMPLE 256
extern DynamicPreprocessorData _dpd;

void Examplelnit(unsigned char *);
void ExampleProcess(void *, void *);

void ExampleSetup()
{

_dpd.registerPreproc("dynamic_example", Examplelnit)

DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor : Example is setup\n"););

The initialization function to parse the keywords franort.conf

u_intl6_t portToCheck;

void Examplelnit(unsigned char *args)

{
char *arg;
char *argEnd,;
unsigned long port;
_dpd.logMsg("Example dynamic preprocessor configuratio n\n");
arg = strtok(args, " \tin\r");
if(Istrcasecmp(“port", arg))
arg = strtok(NULL, "\t\n\r");
if (larg)
{
_dpd.fatalMsg("ExamplePreproc: Missing port\n");
1
port = strtoul(arg, &argEnd, 10);
if (port < O || port > 65535)
{
_dpd.fatalMsg("ExamplePreproc: Invalid port %d\n", port)
}
portToCheck = port;
_dpd.logMsg(" Port: %d\n", portToCheck);
}
else
_dpd.fatalMsg("ExamplePreproc: Invalid option %s\n", ar 9);
1
[* Register the preprocessor function, Transport layer, 1D 10000 */
_dpd.addPreproc(ExampleProcess, PRIORITY_TRANSPORT, 1 0000);
DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor : Example is initialized\n"););
}

The function to process the packet and log an alert if theejtort matches.

#define SRC_PORT_MATCH 1

#define SRC_PORT_MATCH_STR "example_preprocessor: src p ort match"

#define DST_PORT_MATCH 2

#define DST_PORT_MATCH_STR "example_preprocessor: dest port match"

void ExampleProcess(void *pkt, void *context)

{
SFSnortPacket *p = (SFSnortPacket *)pkt;
if (Ip->ip4_header || p->ip4_header->proto != IPPROTO_TC P || !'p->tcp_header)
{

[* Not for me, return */
return;

193

if (p->src_port == portToCheck)

[* Source port matched, log alert */
_dpd.alertAdd(GENERATOR_EXAMPLE, SRC_PORT_MATCH,

1, 0, 3, SRC_PORT_MATCH_STR, 0);
return;

}
if (p->dst_port == portToCheck)

[* Destination port matched, log alert */
_dpd.alertAdd(GENERATOR_EXAMPLE, DST_PORT_MATCH,

1, 0, 3, DST_PORT_MATCH_STR, 0);
return;

4.3.2 Rules
The following is an example of a simple rule, take from therent rule set, SID 109. It is implemented to work with the déta engine provided
with snort.

The snort rule in normal format:

alert tcp $HOME_NET 12345:12346 -> $EXTERNAL_NET any \
(msg:"BACKDOOR nethus active"; flow:from_server,establ ished; \
content:"NetBus"; reference:arachnids,401; classtype: misc-activity; \
sid:109; rev:5;)

This is the metadata for this rule library, definedigtectionlib_meta.h

[* Version for this rule library */

#define DETECTION_LIB_MAJOR_VERSION 1

#define DETECTION_LIB_MINOR_VERSION 0

#define DETECTION_LIB_BUILD_VERSION 1

#define DETECTION_LIB_NAME "Snort_Dynamic_Rule_Exampl e"

[* Required version and name of the engine */
#define REQ_ENGINE_LIB_MAJOR_VERSION 1
#define REQ_ENGINE_LIB_MINOR_VERSION 0
#define REQ_ENGINE_LIB_NAME "SF_SNORT_DETECTION_ENGIN"

The definition of each data structure for this rule isid109.c

Declaration of the data structures.

o Flow option
Define theFlowFlagsstructure and its correspondifRuleOption Per the text version, flow is fromerver,established.

static FlowFlags sid109flow =

FLOW_ESTABLISHED|FLOW_TO_CLIENT
2

static RuleOption sid109optionl =
OPTION_TYPE_FLOWFLAGS,
&sid109flow

b

e Content Option

Define theContentInfostructure and its correspondiRuleOption Per the text version, content is "NetBus”, no depth or offsase
sensitive, and non-relative. Search on the normalizecebbif default. NOTE: This content will be used for the fast pattern matcher since
it is the longest content option for this rule and no contératge a flag oCONTENTFASTPATTERN

194

static Contentinfo sid109content =

{
"NetBus", [* pattern to search for */
0, [* depth */
0, I* offset */
CONTENT_BUF_NORMALIZED, /* flags */
NULL, * holder for boyer/moore info */
NULL, [* holder for byte representation of "NetBus" */
0, * holder for length of byte representation */
0 [* holder for increment length */
h

static RuleOption sid109option2 =
OPTION_TYPE_CONTENT,

&sid109content

2
Rule and Meta Data
Define the references.

static RuleReference sid109ref_arachnids =

{
"arachnids", I* Type */
"401" * value *
3

static RuleReference *sid109refs[] =

&sid109ref_arachnids,
NULL

%
The list of rule options. Rule options are evaluated in thdepspecified.

RuleOption *sid109options[] =

&sid109optionl,
&sid109option2,
NULL
b
The rule itself, with the protocol header, meta data (s@sgfication, message, etc).
Rule sid109 =
{
[* protocol header, akin to => tcp any any -> any any *|
IPPROTO_TCP, [* proto */
HOME_NET, I* source IP *
"12345:12346", * source port(s) */
0, I* Direction */
EXTERNAL_NET, [* destination IP *
ANY_PORT, [* destination port */
h
[* metadata */
{
3, [* genid -- use 3 to distinguish a C rule */
109, [* sigid */
5, [* revision */
"misc-activity”, [* classification */
0, [* priority */
"BACKDOOR nethus active", [* message */
sid109refs [* ptr to references */
h
sid109options, [* ptr to rule options */
NULL, [* Use internal eval func */
0, [* Holder, not yet initialized, used internally */
0, [* Holder, option count, used internally */
0, [* Holder, no alert, used internally for flowhits */
NULL * Holder, rule data, used internally */

195

e The List of rules defined by this rules library
The NULL terminated list of rules. The InitializeDetectidgerates through each Rule in the list and initializes thetewt, flowbits, pcre,
etc.

extern Rule sid109;
extern Rule sid637;

Rule *rules] =
&sid109,
&sid637,
NULL

2

196

Chapter 5

Snort Development

Currently, this chapter is here as a place holder. It will sday contain references on how to create new detectionnglagid preprocessors. End
users don't really need to be reading this section. Thistenied to help developers get a basic understanding of \ghatg on quickly.

If you are going to be helping out with Snort developmentapteuse theleAD branch of cvs. We've had problems in the past of people stibigit
patches only to the stable branch (since they are likelyingrthis stuff for their own IDS purposes). Bug fixes are whaggintoSTABLE. Features
go iNtoHEAD.

5.1 Submitting Patches

Patches to Snort should be sent toshat-devel@lists.sourceforge.net mailing list. Patches should done with the commadiffd-nu snort-orig snort-new

5.2 Snort Data Flow

First, traffic is acquired from the network link via libpcaackets are passed through a series of decoder routinefirshéitl out the packet
structure for link level protocols then are further decoétedthings like TCP and UDP ports.

Packets are then sent through the registered set of preysmse Each preprocessor checks to see if this packet igfsomé should look at.

Packets are then sent through the detection engine. Thetidatengine checks each packet against the various ogtited in the Snort config
files. Each of the keyword options is a plugin. This allows tioi be easily extensible.

5.2.1 Preprocessors

For example, a TCP analysis preprocessor could simplyrréittine packet does not have a TCP header. It can do this byiclgec

if (p->tcph==null)
return;

Similarly, there are a lot of packdiags available that can be used to mark a packet as “reass#hasllogged. Check out src/decode.h for the list
of pkt_* constants.

5.2.2 Detection Plugins

Basically, look at an existing output plugin and copy it toeawitem and change a few things. Later, we’ll document whegétfew things are.

5.2.3 Output Plugins

Generally, new output plugins should go into the barnyaajegt rather than the Snort project. We are currently chegaihiouse on the available
output options.

197

5.3 The Snort Team

Creator and Lead Architect Marty Roesch

Lead Snort Developers Steve Sturges
Bhagyashree Bantwal
Hui Cao
Russ Combs

Ryan Jordan

Snort Rules Team Matt Watchinski
Sojeong Hong
Nigel Houghton
Richard Johnson
Alex Kambis
Alex Kirk
Chris Marshall
Kevin Miklavcic
Patrick Mullen
Matt Olney
Ryan Pentney
Alain Zidoemba

Win32 Maintainer Snort Team

Major Contributors Erek Adams
Andrew Baker
Scott Campbell
Brian Caswell
Dilbagh Chahal
Roman D.
Michael Davis
Chris Green
Lurene Grenier
Jed Haile
Jeremy Hewlett
Victor Julien
Glenn Mansfield Keeni
Adam Keeton
Chad Kreimendahl
Kevin Liu
Rob McMillen
William Metcalf
Andrew Mullican
Jeff Nathan
Marc Norton
Judy Novak
Andreas Ostling
Chris Reid
Daniel Roelker
Dragos Ruiu
JP Vossen
Todd Wease
Daniel Wittenberg
Phil Wood
Fyodor Yarochkin

198

Bibliography

(1]
(2]
(3]
(4]
(5]
(6]

http://packetstorm.securify.com/mag/phrack/phkrgip49-06
http://www.nmap.org
http://public.pacbell.net/dedicated/cidr.html
http://www.whitehats.com

http://www.incident.org/snortdb

http://www.pcre.org

199

	Snort Overview
	Getting Started
	Sniffer Mode
	Packet Logger Mode
	Network Intrusion Detection System Mode
	NIDS Mode Output Options
	Understanding Standard Alert Output
	High Performance Configuration
	Changing Alert Order

	Packet Acquisition
	Configuration
	PCAP
	AFPACKET
	NFQ
	IPQ
	IPFW
	Dump
	Statistics Changes

	Reading Pcaps
	Command line arguments
	Examples

	Basic Output
	Timing Statistics
	Packet I/O Totals
	Protocol Statistics
	Actions, Limits, and Verdicts

	Tunneling Protocol Support
	Multiple Encapsulations
	Logging

	Miscellaneous
	Running Snort as a Daemon
	Running in Rule Stub Creation Mode
	Obfuscating IP Address Printouts
	Specifying Multiple-Instance Identifiers
	Snort Modes

	More Information

	Configuring Snort
	Includes
	Format
	Variables
	Config

	Preprocessors
	Frag3
	Stream5
	sfPortscan
	RPC Decode
	Performance Monitor
	HTTP Inspect
	SMTP Preprocessor
	FTP/Telnet Preprocessor
	SSH
	DNS
	SSL/TLS
	ARP Spoof Preprocessor
	DCE/RPC 2 Preprocessor
	Sensitive Data Preprocessor
	Normalizer

	Decoder and Preprocessor Rules
	Configuring
	Reverting to original behavior

	Event Processing
	Rate Filtering
	Event Filtering
	Event Suppression
	Event Logging

	Performance Profiling
	Rule Profiling
	Preprocessor Profiling
	Packet Performance Monitoring (PPM)

	Output Modules
	alert_syslog
	alert_fast
	alert_full
	alert_unixsock
	log_tcpdump
	database
	csv
	unified
	unified 2
	alert_prelude
	log null
	alert_aruba_action
	Log Limits

	Host Attribute Table
	Configuration Format
	Attribute Table File Format
	Attribute Table Example

	Dynamic Modules
	Format
	Directives

	Reloading a Snort Configuration
	Enabling support
	Reloading a configuration
	Non-reloadable configuration options

	Multiple Configurations
	Creating Multiple Configurations
	Configuration Specific Elements
	How Configuration is applied?

	Active Response
	Enabling Active Response
	Configure Sniping
	Flexresp
	React
	Rule Actions

	Writing Snort Rules
	The Basics
	Rules Headers
	Rule Actions
	Protocols
	IP Addresses
	Port Numbers
	The Direction Operator
	Activate/Dynamic Rules

	Rule Options
	General Rule Options
	msg
	reference
	gid
	sid
	rev
	classtype
	priority
	metadata
	General Rule Quick Reference

	Payload Detection Rule Options
	content
	nocase
	rawbytes
	depth
	offset
	distance
	within
	http_client_body
	http_cookie
	http_raw_cookie
	http_header
	http_raw_header
	http_method
	http_uri
	http_raw_uri
	http_stat_code
	http_stat_msg
	http_encode
	fast_pattern
	uricontent
	urilen
	isdataat
	pcre
	file_data
	base64_decode
	base64_data
	byte_test
	byte_jump
	byte_extract
	ftpbounce
	asn1
	cvs
	dce_iface
	dce_opnum
	dce_stub_data
	ssl_version
	ssl_state
	Payload Detection Quick Reference

	Non-Payload Detection Rule Options
	fragoffset
	ttl
	tos
	id
	ipopts
	fragbits
	dsize
	flags
	flow
	flowbits
	seq
	ack
	window
	itype
	icode
	icmp_id
	icmp_seq
	rpc
	ip_proto
	sameip
	stream_reassemble
	stream_size
	Non-Payload Detection Quick Reference

	Post-Detection Rule Options
	logto
	session
	resp
	react
	tag
	activates
	activated_by
	count
	replace
	detection_filter
	Post-Detection Quick Reference

	Rule Thresholds
	Writing Good Rules
	Content Matching
	Catch the Vulnerability, Not the Exploit
	Catch the Oddities of the Protocol in the Rule
	Optimizing Rules
	Testing Numerical Values

	Dynamic Modules
	Data Structures
	DynamicPluginMeta
	DynamicPreprocessorData
	DynamicEngineData
	SFSnortPacket
	Dynamic Rules

	Required Functions
	Preprocessors
	Detection Engine
	Rules

	Examples
	Preprocessor Example
	Rules

	Snort Development
	Submitting Patches
	Snort Data Flow
	Preprocessors
	Detection Plugins
	Output Plugins

	The Snort Team

